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Abstract 

The field of Explainable AI (XAI) has rapidly gained importance over the last years, especially 

in highly risk-averse domains such as healthcare. XAI methods are intended to clarify an AI's 

decision process, giving the human operator the opportunity to understand the reasoning 

behind an AI decision. However, insights and research on the effective collaboration of 

humans and XAI are rare. It is still unclear whether decision-makers engage analytically with 

XAI methods to comprehend the reasoning behind an AI prediction, or instead develop mental 

shortcuts and take the explanatory methods more as a general indication of an AI’s 

competency. The latter assumption bears the risk that human operators develop an 

inclination to rely on automated cues as a heuristic substitute for diligent information seeking 

and processing, resulting in an inappropriate over-reliance on the automated output. This 

thesis aims to empirically investigate the influence of explainable AI methods on the over-

reliance of radiologists on opaque AI predictions, by taking the human cognition into account. 

For this purpose, a lab experiment with radiologists was conducted in the field of 

mammography in a between-subject research design. The key findings indicate no clear 

pattern between an increase in the number of XAI methods and an increase in over-reliance. 

Also, no notable difference was discovered between the over-reliance in situations when the 

radiologists heavily interacted with the XAI methods in an analytical manner or didn’t interact 

analytically with the XAI methods at all. This indicates that XAI methods do not necessarily 

influence the radiologists to deviate from the AI prediction in their own decision, even if the 

AI was severely wrong. Lastly, it was found that radiologists clearly prefer saliency maps as XAI 

methods, in which a causal explanation for a given AI prediction is visualized in the object 

under investigation. 

 

Keywords: Artificial Intelligence, Explainable Artificial Intelligence, Radiology, Mammography, 
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1 Introduction 

Digital transformation has affected all areas of society. In the domain of healthcare, computer 

systems are not only designed to support documentation and administrative tasks but 

expected to efficiently assist health professionals in complex clinical situations (Varghese, 

2020). Throughout the years, the emergence of Artificial Intelligence (AI) applications, 

especially advanced Machine Learning (ML) methods, like Deep Learning (DL), became 

increasingly prevalent in the medical domain and build a central role for healthcare innovation 

(Gille et al., 2020).  

Nevertheless, the potential of AI in healthcare has not been realized to date, with 

limited existing reports of benefits that have arisen from real world use of AI algorithms in 

clinical practice (Kelly et al., 2019). DL models reach impressive prediction accuracies, but their 

nested non-linear structure makes them highly non-interpretable (Samek et al., 2017). It is not 

clear what information from the input data influences their decision (Gunning et al., 2019; 

Samek et al., 2017). Therefore, non-interpretable models are typically regarded as black boxes 

(Wang et al., 2019; Samek et al., 2017; Gastounioti & Kontos, 2020). In healthcare, where 

interpretability is paramount for decision-making, this non-interpretable nature seriously 

limits the chances of adoption of AI-based systems that rely on opaque models (Vellido, 2019).  

To address the black box problem, the field of Explainable AI (XAI) has rapidly gained 

importance in research over the last years (see Figure A1). The domain deals with explainable 

methods to support opaque AI models to make their behavior more intelligible to humans 

(Gunning et al., 2019). Among researchers, there is a unanimous opinion that it is easier for 

decision-makers and patients to trust and rely on models that give explanations for their 

decisions compared to solely non-interpretable black box algorithms (Gastounioti & Kontos, 

2020; Siau & Wang, 2018; Lee & See, 2004).  

However, multiple studies claim that medical decision-makers shouldn’t insist for too 

much information conveyed by XAI in a real medical environment (Buçinca et al., 2021; 

Poursabzi-Sangdeh et al., 2021; Rai, 2019). The underlying argument is that informative 

explanations about given AI predictions demand significant cognitive effort (Buçinca et al., 

2021), however, humans are limited in their capacity to process information (Fiske & Taylor, 

1991). In order to compensate for increased cognitive effort, humans tend to rely on heuristic 
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and intuitive thinking, often following mental shortcuts (Gigerenzer & Gaissmaier, 2011; 

Kahneman, 2011). Therefore, the assumption that humans will engage extensively with 

explainable AI methods is questioned, because assessing additional information about the 

underlying AI predictions demands significant cognitive effort due to increased complexity 

(Buçinca et al., 2021). Instead, it is argued that humans may rather tend to develop a heuristic 

assessment about an AI’s overall performance and that explanatory methods are taken as a 

general indication of an AI’s competency rather than being examined individually for their 

substance (Bansal et al. 2021; Buçinca et al., 2021; Liao & Varshney, 2021). This bears the risk 

that human operators fall into automation bias (AB), meaning that “automated cues are used 

as a heuristic replacement for vigilant information seeking and processing” (Mosier & Skitka, 

1999, p. 344). Therefore, despite the fact that nowadays sophisticated AI-based decision-

aiding systems offer very high accuracies, the occasional incorrect advice they give may result 

in human decision-making errors due to inappropriate over-reliance (Goddard et al., 2012; 

Parasuraman & Manzey, 2010). 

However, there remains an empirical gap in research on how decision-makers 

cognitively behave when they are supported by XAI methods in their collaboration with AI 

(Liao & Varshney, 2021). It remains unclear if decision-makers superficially associate 

explainable methods directly with an AI’s competence through heuristical thinking, and 

therefore form unwarranted over-reliance. Therefore, this thesis aims to answer the following 

research question (RQ): 

 

“How do explainable AI methods promote the over-reliance of clinical decision-makers on 

the predictions of non-transparent AI models?” 

 

The main focus by investigating the RQ lies in the "How", meaning that this study 

mainly tries to gain new insights on how mindful humans actually engage with explainable AI 

methods and how this subsequently leads to over-reliance. The RQ will be investigated in the 

clinical context of mammography classification. Therefore, the setting is used to 

experimentally examine how different amounts of explainable AI methods affect radiologists 

by giving diagnoses. 
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1.1 Theoretical Relevance 

This study intends to provide theoretical relevant contributions to the concept of XAI from a 

human-centered point of view. While the current literature on XAI is mainly concerned with 

the elucidation of novel explanation methods from the technical side in an algorithm-centered 

point of view, the human side of the equation is often lost in this technical discourse with XAI 

(Liao & Varshney, 2021; Ehsan & Riedl, 2020). Although there exists empirical research that 

investigates the outcome of jointly human-AI decision-making (Poursabzi-Sangdeh et al., 

2021; Rai, 2019; Eiband et al., 2019; Kaur et al., 2020), there is still a lack in research that 

depicts how XAI methods for non-technical end-users and the understanding of human 

cognitive factors co-evolve. The cited studies illustrate the dangers of deploying new 

technologies to support humans in their decision-making, but without a clear understanding 

of how the human end-users actually cognitively engage with the new technology. Therefore, 

this study aims to fill this empirical gap by investigating how the occurrence of human over-

reliance on opaque AI predictions is influenced by the cognitive interaction of human users 

with XAI methods.  

This sociotechnical view can help to proactively reflect on implicit or unconscious 

values embedded in AI practices but not considered during implementation, so that 

stakeholders can understand the blind spots in epistemology (Ehsan & Riedl, 2020). Such 

reflection can bring unconscious or implicit values and practices into awareness. 

1.2 Practical Relevance 

As AI-powered applications increasingly mediate consequential decision-making, explanations 

for their predictions are crucial for end-users to take informed and accountable actions (Ehsan 

et al., 2021a). However, developing explanatory methods to support AI predictions is 

challenging because the effectiveness of these explanations lies not in the method itself, but 

in the perception and reception by the person receiving the explanation (Liao & Varshney, 

2021). Providing explanations does not ensure that the person who receives the information 

can make sense of it or is not overwhelmed. The field of XAI has been criticized for its 

algorithmic-centric view based on the impression that XAI researchers often develop 

explainable methods based on their own intuition rather than the situated needs of their 

intended users (Ehsan et al., 2021a). The main question that has been raised in most studies 

when it comes to real-world AI adoption among radiologists refers to how much of an AI/XAI 
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solution's inner workings and outputs radiologists should be able to assess and interpret. 

(Reyes et al., 2020; Simonite, 2018; Wang et al., 2019; Balagurunathan et al., 2021). This 

question is discussed extensively and is also highly relevant to the continuing course of the 

adoption for AI in medicine. However, this study does not focus on what and how much 

radiologists should know about AI, but how they behave when interacting and making 

decisions with various available XAI methods. The findings of this study are relevant for 

radiologists per se to create awareness about the potential risk of over-reliance while being 

exposed to XAI in a clinical setting. Furthermore, this study provides vendors of AI applications 

for clinical imaging with valuable insight about the evaluation and cognitive interaction 

process of radiologists with explainable AI methods. By empirically analyzing the radiologists’ 

behavior in this study, model developers can tailor and implement XAI methods in an 

optimized, user-friendly way. 

1.3 Thesis Outline 

The second chapter provides the relevant literature and theoretical foundation by elucidating 

the concepts of Hybrid Intelligence, Explainable AI, and Human Reliance. Additionally, the 

latter two concepts are investigated under the theoretical lens of the human mind as a 

cognitive miser. Chapter 3 fully describes how the research is going to be conducted by an 

experimental approach in the domain of radiology. Subsequently, chapter 4 presents the 

findings of the data analysis. The thesis will continue with a discussion of the findings before 

concluding with the theoretical and practical contributions, the research limitations, and the 

future research opportunities. 

2 Literature and Theory 

This chapter provides an overview of the general concept of Hybrid Intelligence, the two main 

concepts of Explainable AI and Reliance, and the theoretical lens of the human mind as a 

cognitive miser. First, the three concepts are elaborated in-depth. Furthermore, the concept 

of XAI is linked to the concept of human reliance on algorithmic outputs and is investigated 

under the theoretical lens of the human mind as a cognitive miser. Lastly, a conceptual model 

will be presented together with the hypotheses resulting from the evaluated literature. 
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2.1 Hybrid Intelligence 

Rapid breakthroughs in AI fuel the ongoing debate about whether AI will be able to replace 

domain experts in the near future (Jarrahi, 2018). Reducing human autonomy, on the other 

hand, may not be desired in many application fields. In the domain of medicine for example, 

the cost of errors may not be acceptable when full algorithmic accuracy is not possible 

(Hemmer et al., 2021) and AI is incapable of interacting with patients in a human way to gain 

patients' trust, reassuring them, or expressing empathy, which are all crucial aspects of the 

doctor–patient interaction (Krittanawong, 2018). Because supervised AI algorithms also fail to 

deal with scenarios that differ from the patterns learned during training, AI's capabilities are 

frequently limited to narrowly defined application contexts (D'Amour et al., 2020). When it 

comes to situations where “thinking out of the box” is required, humans are superior to 

current state-of-the-art AI models and can take over characteristics that the AI lacks, such as 

intuition or creativity (Hemmer et al., 2021).  

The concept of Hybrid Intelligence addresses this interplay between humans and 

machines (Dellermann et al., 2019). The Hybrid Intelligence concept proposes to combine the 

complementary capabilities of humans and AI by facilitating collaboration to achieve 

complementary team performance (CTP) (Liu et al., 2021; Dellerman et al., 2019). The ideal 

outcome of CTP is that the human-AI collaborative decision making exceeds the maximum 

performance of both individual entities (Hemmer et al., 2021; Dellermann et al., 2019; Liu et 

al., 2021). However, to achieve this outcome, humans need explanations for how the AI 

arrived at a certain prediction (Hemmer et al., 2021). Therefore, the next chapter deals with 

exactly this issue and elaborates extensively on the concept of Explainable AI. 

2.2 Explainable Artificial Intelligence 

The issue of the opaque character of sophisticated AI models has experienced a significant 

surge in interest over the last years, which can be demonstrated by the quickly growing 

number of research publications in the field of XAI (see Figure A1). The purpose of Explainable 

AI (XAI) is to support opaque AI models with techniques to make their behavior more 

intelligible to humans by providing explanations (Gunning et al., 2019). AI explanation tools 

play the key role of being intermediaries between opaque models and human experts who 

need explanation about the AI prediction in order to comprehend a problem and to make 

decisions about the data and analytical models (Vellido, 2019).  
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Common evaluation metrics for supervised learning assess mainly a model’s level of 

classification accuracy2, its F1-score3 or the Area Under Curve4 (AUC). In some scenarios, 

predictions alone and metrics calculated on these predictions do not suffice to characterize 

and evaluate a model and offer little assurance that a model behaves acceptably (Lipton, 

2018). Besides the statistical evaluation criteria mentioned above, explainability methods aim 

to enhance the trust of users in algorithmic outputs by creating evidence that demonstrates 

the robustness and underlying functioning of a model (Reyes et al., 2020). This helps users to 

understand the reasons behind AI predictions and to draw their own conclusions from 

algorithmic outputs. 

Often, the AI methods with the highest performance (e.g., DL) are the least 

interpretable because of their non-linear structure, and the most interpretable methods (e.g., 

decision trees5) are the least accurate (Gunning et al., 2019; Samek et al., 2017). This is also 

referred to as the performance-interpretability tradeoff (Gunning et al., 2019). Therefore, 

explainable methods for non-interpretable, but sophisticated AI methods are essential for the 

adoption of high performant AI solutions in order to offset the performance-interpretability 

tradeoff. 

2.2.1 Terminology clarification 

The interchangeable use of the term’s interpretability and explainability in the literature is one 

of the challenges impeding the distinction between those two closely related, but different 

concepts.  

To begin, interpretability is a passive property of a model that describes the degree to 

which a model makes sense to a human observer (Barredo Arrieta et al., 2020). This 

characteristic is also known as transparency (Lipton, 2018). A model is denoted as 

interpretable when a human can use input data together with the parameters of a model to 

reproduce every calculation step necessary to make the models prediction (Lipton, 2018; 

Chakraborty et al., 2017; Barredo Arrieta et al., 2020). Therefore, the user is able to 

 
2 Classification accuracy = ratio of number of correct predictions to the total number of input samples 
3 F1-score = harmonic mean of precision (proportion of positive predictions which was actually correct) and recall 
(proportion of actual positives which was identified correctly (Powers, 2020) 
4 AUC = Area under the Receiver operating characteristic (ROC) curve; defined as a measure of the ability of a 
classifier to distinguish between classes (see Figure A2 in appendix) (Powers, 2020) 
5 A decision tree is a decision support tool that uses a tree-like model which combines pre-defined (a) action 
choices with (b) different possible events or results of action which are partially affected (Magee, 1964) 
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understand the process followed by the model to produce any given output from its input 

data (Lipton, 2018; Chakraborty et al., 2017; Barredo Arrieta et al., 2020). To give an example, 

a linear model can be seen as interpretable and transparent because its error susceptibility 

can be reasoned about, allowing the user to understand how the model will act in every 

situation it may face (James et al., 2021). On the other hand, it is difficult to fully understand 

modern DL applications as the model’s loss calculation might be opaque since it cannot be 

fully observed and the optimal solution has to be approximated through stochastic 

optimization (e.g., stochastic gradient descent6, also called “black box optimizers”) (Ruder, 

2016). 

Explainability, on the other hand, can be thought of as a model's active feature, 

referring to any action or procedure conducted by a complex model with the goal of clarifying 

or detailing its internal functions (Barredo Arrieta et al., 2020). Therefore, explainability is also 

often referred to as post-hoc interpretability (Lipton, 2018). While explainable methods do not 

precisely disclose how a model works in terms of its algorithmic design, they nevertheless 

convey user-friendly information for practitioners and end-users of complex ML algorithms 

(Lipton, 2018).  

In general, the domain of XAI distinguishes between two types of explainability, named 

global and local explainability (Adadi & Berrada, 2018; Doshi-Velez & Kim, 2017). Global 

explanatory methods facilitate the understanding of the entire logic of a model and give 

insights about the overall reasoning leading to all different possible predictions (Adadi & 

Berrada, 2018). Global methods give explanations by determining which patterns in a dataset 

are most important to the model's predictions (Doshi-Velez & Kim, 2017; Reyes et al., 2020). 

Therefore, global methods are useful during the development and validation of AI solutions 

to verify if the learned patterns extracted from the input data are consistent with existing 

domain knowledge (Reyes et al., 2020). In addition, global methods can be used for scientific 

understanding and for bias detection in the training data that a model may be using to make 

its predictions (Reyes et al., 2020; Doshi-Velez & Kim, 2017). Contrastingly, local methods aim 

to explain why a model makes a specific prediction for a given input (Samek et al., 2021; Reyes 

et al., 2020). They provide explanations for a given input sample, which can be an image voxel, 

 
6 Method to find the suitable parameter configuration for optimizing a machine learning algorithm. Stochastic 
gradient descent iteratively makes small adjustments to a machine learning parameter configuration to decrease 
the error size of the algorithm (Bottou, 1991). 
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a complete image, or a set of patient-specific data (Reyes et al., 2020). In the further context 

of this thesis, the main focus lies on local explainability methods. 

 

Term Definition 

Interpretability 

Passive property of an AI model that describes the degree to which 

a model is reasonable and understandable to a human observer in 

terms of reproducing the prediction for a given input (Barredo 

Arrieta et al., 2020; Lipton, 2018) 

Explainability 

An opaque model's active feature to offer explainable methods 

that convey user-friendly information with the goal of clarifying or 

detailing its functions (Barredo Arrieta et al., 2020; Lipton, 2018) 

Global explanations 

Explainable methods that work on an array of inputs to describe 

the overall behavior of a black box model (Adadi & Berrada, 2018; 

Reyes et al., 2020) 

Local explanations 

Explainable methods that offer justifications for a specific decision 

or single prediction of a black box model (e.g., Grad-CAM or 

Relevance Pooling) (Adadi & Berrada, 2018; Samek et al., 2021; 

Reyes et al., 2020) 

Table 1: Terminology overview 

 

2.2.2 Issues with opaque AI models and the urge for explainability in the domain 

of medicine 

Since the basic concept of XAI and the individual terms have been elaborated in detail to 

create a fundamental knowledge, this section will establish a link to the healthcare sector and 

clarify which problems arise from opaque AI methods in the medical domain and how these 

can be addressed by XAI. 

Despite the high research output and promising performance of DL outputs in the 

medical domain, their adoption in real-life medical processes is rather low (Kelly et al, 2019). 

The black box character of high-performance models is problematic for AI to be adopted in 

sensitive yet critical domains, where their value could be immense, such as healthcare 
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(Linardatos et al., 2020). Although users may be able to get accurate decisions and predictions, 

one cannot clearly grasp the logic behind an AI model’s outputs without further supporting 

methods (Gunning et al., 2019; Vellido, 2019; Reyes et al., 2020; Linardatos et al., 2020). In 

healthcare, the impossibility of understanding and validating the decision process of an AI 

system is a clear drawback and bottleneck (Samek et al., 2017). Failures in giving diagnosis or 

wrong treatment or medication can cost human lives, therefore the domain is highly risk 

averse (Holzinger et al., 2017). Clinical decisions are built upon a complex synthesis of basic 

sciences, clinical evidence, and patient preferences (Plsek & Greenhalgh, 2001). However, 

medical professionals cannot rely on opaque AI predictions to make decisions they can’t 

explain to either a patient or to other medical experts, whereas a patient may be wary of an 

expert who relies his or her decision on unexplained results from an AI (Vellido, 2019). 

Additionally, if medical professionals are complemented by sophisticated AI systems and get 

overruled by the AI in some cases, the medical experts must still have a chance to understand 

and retrace the machine decision process (Holzinger et al., 2017).  

Current literature agrees that trust of medical experts in advanced AI models is the key 

for clinical adoption (Gille et al., 2020; Reyes et al., 2020; Siau & Wang, 2018). By taking the 

concept of Hybrid Intelligence into account, explainable AI methods allow users to understand 

and interact with the explanatory narratives, creating trust in AI and enabling effective 

complementary team performance (Gunning & Aha, 2019). According to a study of 

Tonekaboni et al. (2019), which surveyed clinicians to identify specific aspects of explainability 

that might help building trust in AI models, the participating clinicians remarked that it is 

crucial for them to know the subset of features that significantly drove an AI model to a 

particular outcome. This allows them to compare model decisions to their own clinical 

judgment, which is particularly useful when the AI prediction significantly deviates from the 

personal decision (Tonekaboni et al., 2019). This is consistent with the implicit assumption 

underpinning the design of the majority of XAI methods, namely that humans will interact 

mindfully with the provided explanations and use them to assess which AI predictions are 

credible and which appear to be based on erroneous reasoning.  
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2.3 Human reliance on AI 

The concept of human reliance plays an important role in the adoption of AI. Since this concept 

plays a central role in the further course of this thesis, it will be described in more detail in this 

section. To make a clear distinction between the concepts of Reliance and Trust, the first part 

of this paragraph provides a general overview on the concept of Reliance and further sets it 

apart from the concept of Trust to avoid terminological confusion between these two 

concepts in the further course of the thesis. 

Reliance can be defined as an enduring relationship based on the dependable habits 

of one party towards another (Baier, 1986). De Fine Licht & Brülde (2021) demonstrate the 

concept of reliance as a three-dimensional relation, where one agent (A) relies on another 

agent or some other object (B) to do something or to maintain some specific state (C). To give 

an example how this concept might look like in relation to the application of AI in radiology: A 

radiologist (A) relies on an ML-based image classification algorithm (B) by giving a diagnosis 

(C). To make a distinction between the concepts of reliance and trust, Baier (1986) argues that 

trust can only exist in relationships if there is a possibility for betrayal. Based on this statement, 

Deley & Dubois (2020) argue that humans cannot truly form trust relationships with 

technology because technology cannot “betray” us. They further argue that we do not trust 

technologies like we trust people, rather we rely on them, and they can succeed or fail, so 

technology might disappoint us but does not betray us when it fails (Deley & Dubois, 2020). 

Lee & See (2004, p.51) describe trust as “the attitude that an agent will help achieve an 

individual’s goals in a situation characterized by uncertainty and vulnerability”. In contrast to 

Deley & Dubois (2020), Lee & See (2004) argue that automation (technology) can also be an 

agent. An important difference Lee & See (2004) draw between trust and reliance is that trust 

reflects an attitude and reliance a behavior towards automation, whereby trust guides 

reliance.  

In the context of this thesis, the concept of trust is based on the definition of Lee & See 

(2004) and will be defined as the attitude of a human towards another agent (human or non-

human) by trying to achieve an individual’s goals in a situation characterized by uncertainty 

and vulnerability. The concept of reliance is based on Baier (1986) and will be defined as the 

behavior of humans to form dependable habits towards another agent (human or non-

human). 
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2.4 The human as a fast cognitive miser  

To assess the concepts of Hybrid Intelligence and XAI from a human-centered point of view, 

this thesis relies upon the psychology-based theoretical lens of the human mind as a cognitive 

miser and the heuristically judgement and decision-making humans tend to follow by 

conducting mentally demanding tasks (Fiske & Taylor, 1991; Kahneman, 2003; Stanovich, 

2009). First, the cognitive miser theory and the closely related concept of heuristical human 

judgment and decision-making are elaborated. Furthermore, the human reliance on AI 

outputs and explainable AI methods is examined from the above theoretical perspective. 

2.4.1 Cognitive miser theory and heuristics in human judgment and decision-

making 

In the field of psychology, the human mind is referred to as a cognitive miser, because humans, 

regardless of their intelligence, prefer to think and solve issues in simpler and less effortful 

ways rather than in a sophisticated and effortful manner (Stanovich, 2009). The underlying 

assumption of the concept is that humans are limited in their capacity to process information, 

so they take shortcuts whenever they can (Fiske & Taylor, 1991; Kahneman, 2003). The 

cognitive miser theory is a unifying theory first introduced by Fiske & Taylor (1991), which 

suggests that humans engage in economically cost-effective thought processes instead of 

rationally weighting costs against benefits and updating expectations based upon the results 

of their everyday actions (Fiske & Taylor, 1991). Much of the cognitive miser theory is built 

upon research done on heuristics in human judgment and decision-making.  

Dual-process theories provide an architecture for the interaction between intuitive 

(System 1) and analytical (System 2) thinking (Stanovich & West, 2000; Kahneman, 2003; 

Kahneman, 2011) and provide therefore a crucial lens to understand how humans process 

information conveyed by explainable methods in the scope of XAI. System 1 is referred to as 

fast and intuitive thinking, often following mental shortcuts and heuristics, whereas System 2 

is referred to as slow and effortful analytical thinking, relying on conscious and careful 

reasoning of information and arguments (Kahneman, 2003; Kahneman, 2011). Because 

System 2 is slower and more cognitively demanding than System 1, humans often switch to 

System 1 thinking, thus using heuristical thinking for a faster, more efficient computation of 

information, but with the risk to arrive at a sub-optimal decision (Liao & Varshney, 2021). 

Heuristics can be defined as the "judgmental shortcuts that generally get us where we need 
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to go—and quickly—but at the cost of occasionally sending us off course" (Gilovich & Savitsky, 

1996, p.36). More detailed, to reduce their cognitive load, humans tend to ignore part of the 

information associated to certain tasks and rather rely on mental shortcuts to solve the 

underlying task, because information search and information computation costs time and 

cognitive resources (Gigerenzer & Gaissmaier, 2011). Heuristics trade off some loss in accuracy 

for faster and more frugal cognition (Gigerenzer & Gaissmaier, 2011). 

2.4.2 Over-reliance on AI predictions due to mental shortcuts 

As described in previous paragraphs, increasing human trust in AI plays a central role for AI 

adoption and is a significant reason for implementing explainable methods for opaque 

models. Trust in automated decision-aiding systems (which are based on modern ML 

techniques like DL for instance) increases human reliance on the outputs of those systems 

(Goddard et al., 2012; Lee & See, 2004), but simultaneously, trust is also a strong driving factor 

for human over-reliance (Goddard et al., 2012). Despite the fact that sophisticated AI-based 

decision-aiding systems nowadays offer very high accuracies, the occasional incorrect advice 

they give may result in human decision-making errors due to inappropriate over-reliance on 

the automated output (Goddard et al., 2012; Parasuraman & Manzey, 2010). These errors can 

be traced back to the systematic pattern of Automation Bias (AB), which is defined as the 

“tendency to use automated cues as a heuristic replacement for vigilant information seeking 

and processing” (Mosier & Skitka, 1999, p. 344). Given the highly serious nature of potential 

consequences of AB in the healthcare domain, it is especially important to be aware of this 

problem when it occurs in clinical settings (Goddard et al., 2012). Parasuraman & Manzey 

(2010) gave clear evidence for AB in the clinical environment by showing that cancerous tissue 

that was diagnosed in 46% of cases without decision-aiding systems was discovered in only 

21% of cases with decision-aiding systems, whereby the decision-aiding systems failed to 

identify the cancer. Additionally, Goddard et al. (2012) showed that clinicians overrode their 

own correct decisions in favor of erroneous advice from technology between 6% and 11% of 

the time. 

The underlying human behavior that causes AB can be reasoned if the human is viewed 

as a cognitive miser and the dual-processing theory (System 1 vs. System 2) is taken into 

account. Goddard et al. (2012) argue that factors such as task complexity and workload can 

place pressure on cognitive resources, leading to a more heuristic-based use of decision-
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support system outputs in order to compensate for the increased cognitive effort. Therefore, 

according to Buçinca et al. (2021), the assumption that humans will engage analytically 

(System 2 thinking) with explainable AI methods is likely erroneous since assessing local 

explanations for each AI prediction demands significant cognitive effort due to increased 

complexity. Instead, humans tend to develop heuristics (System 1 thinking) about the AI’s 

overall performance (Buçinca et al., 2021). Bansal et al. (2021) argue that explanatory 

methods are taken as a general indication of an AI’s competency rather than being examined 

individually for their substance. This leads to the following first hypothesis:  

 

H1: An increasing number of available XAI methods does not stimulate decision-makers to 

increase their analytical thinking about the reasoning behind AI outputs. 

 

Furthermore, more complex tasks tend to increase human over-reliance on 

automation aid, meaning to fall into AB and to follow the automated decision, even if it’s 

wrong (Goddard et al., 2012). Bansal et al. (2021) argue that the mere appearance of XAI 

methods might increase trust in and over-reliance on AI, regardless of the provided 

information. Several studies gave evidence for a positive relationship between the amount of 

information that is available to solve a task (and the associated cognitive effort) and AB. Yeh 

& Wickens (2001) concluded that providing too much on-screen detail can decrease user 

attention and care, thereby increasing the risk for AB. Poursabzi-Sangdeh et al. (2021) found 

similar results by stating that if extensive information about model parameters of AI models 

is offered, this may hamper a user's ability to detect when the model made a sizable mistake 

(Poursabzi-Sangdeh et al., 2021). The researchers argue that the reason for this is the 

information overload which is caused by the amount of detail in front of the user (Poursabzi-

Sangdeh et al., 2021). This is in line with Rai (2019) who states that complicated explanations 

and a high degree of transparency regarding the underlying functioning of AI models can 

impose significant attention costs, cause information overload, and frustrate users. Based on 

the stated literature, this study proposes the following second hypothesis: 
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H2: An increasing number of available XAI methods leads to over-reliance of decision-makers 

on AI outputs. 

 

If a humans’ cognitive ability and behavior by conducting tasks which require mental 

effort is taken into account, XAI must be seen as a double-edged sword. The fact that the urge 

for explainable AI methods is intended to strengthen and promote human trust in AI models 

also bears the risk to promote over-reliance in AI due to less mindful, heuristic assessment by 

the human operator. However, current literature lacks insights and empirical evidence about 

the way end-users interact with XAI methods (System 1 vs. System 2 thinking) and how they 

affect the reliance of the model user on the AI prediction. Therefore, this thesis aims to 

empirically investigate how different quantity levels of explainable AI methods are cognitively 

processed in an intuitive (System 1 thinking) or analytical (System 2 thinking) way by a human 

operator and how this human-XAI interaction subsequently affects the human reliance on the 

AI output. 

Hypothesis Arguments Literature 

H1 

• Increased task complexity can place pressure on 

cognitive resources leading a more heuristic-based 

thinking  

• Assessing local explanations for each AI prediction 

demands significant cognitive effort 

• XAI methods are rather taken as a general 

indication of an AI’s competency rather than being 

examined individually for their substance to avoid 

additional cognitive effort 

Goddard et al. (2012); Buçinca et al. 

(2021); Bansal et al. (2021); Liao & 

Varshney (2021) 

H2 

• intuitive thinking increases risk for AB 

• A high number of on-screen details can decrease 

user attention and care, thereby increasing the risk 

for AB 

• Extensive information about model parameters of 

AI models can hamper a users’ ability to detect 

when the model made a sizable mistake due to 

information overload 

Poursabzi-Sangdeh et al. (2021); Rai 

(2019); Zhang et al. (2020); Yeh & 

Wickens (2001); Goddard et al. (2012) 

Table 2: Main arguments for stated hypotheses 
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2.5 Conceptual model and hypotheses development 

The preceding sections illustrated the theoretical background, academic discourse, and the 

central concepts of XAI and human reliance on given AI predictions. In addition, the concepts 

were judged through the presented theoretical lens, which portrays humans as cognitive 

misers who favor heuristic thinking to reduce cognitive load. To clarify and visualize the 

relationship between the concepts which are involved in order to address the RQ, the 

following conceptual model is build: 

 

Figure 1: Conceptual model 

 

3 Methodology 

This chapter discusses the research design, the experimental design, the corresponding data 

collection, and the data analysis used in order to investigate the collected data to analyze the 

underlying RQ of this study. In the end of this chapter, the ethical considerations that were 

taken into account while conducting this study will also be addressed. 

3.1 Research Design 

In order to answer the RQ of this study, this thesis follows a deductive approach because the 

directional hypotheses mentioned in Chapter 2 are going to be tested within the scope of a 

lab experiment. This approach was chosen because a lab experiment can be conducted under 

highly controlled conditions where accurate measurements of causal relationships are 

possible in an artificial environment (Brüggemann & Bizer, 2016). The main advantage is that 

designing a lab experiment allows for precise control of extraneous and independent variables 

(McLeod, 2012). The design of the experiment application is leaned towards a design science 

approach and thus the development of an artifact and the measurement of its impact in a 

https://www.simplypsychology.org/saul-mcleod.html
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specific context (Hevner et al. 2004). Furthermore, this study will follow a quantitative analysis 

and a between-subject design between different participant groups that are exposed to 

different amounts of available XAI methods. The participants are randomly assigned to the 

different groups. The unit of analysis (UOA) are the radiologists as human operators in a Hybrid 

Intelligence setting. Due to the provided contact to domain experts in the field of radiology, 

the study is carried out in the medical context of mammography. This field is particularly 

suitable for the research purpose of this study since the domain of mammography is based on 

a standardized diagnosis system for detecting cancerous breast tissue (Eberl et. al, 2006), 

which facilitates the comparison of the diagnosis of a human decision-maker to the prediction 

of an AI-based decision aid system.  

3.2 Data Collection and design of the experiment application 

The data collection and experimental design period ranged from January to June 2022 and can 

be divided into 4 superordinate categories: (1) Literature review (January-June), (2) 

preliminary observations with involved radiologists (April-June), (3) the experiment design and 

development (April-June), and lastly the (4) experimental data Collection (June). Figure 2 

illustrates the timeline of the data collection and experiment development. 

 

 
Figure 2: Timelines of data collection activities 

 

3.2.1 Preliminary observations and experiment setup 

To set up the underlying experiment and to make the experiment application as realistic as 

possible to ensure internal validity (Cook & Campbell, 1979), our supervisor put us in contact 

with two field experts, a Senior Medical Advisor for AI applications for Chest Analysis as well 
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as a Senior Radiologist, who are both involved in research in the field of AI in radiology. In a 

total of 4 online group meetings, we were able to gather detailed expertise on the use of AI in 

radiology as well as helpful tips for the experiment setting. Table 3 gives a comprehensive 

overview of the discussed topics in the single meetings. 

No. Involved contacts Topic of the meeting 

1 • Senior Medical Advisor for AI 

• Senior Radiologist 

• Supervisor (Researcher KIN 
Center VU) 

• Meeting served as general arrangement and overall 
assessment of the feasibility of the experiment.  

• After the meeting, the Senior Radiologist provided us with 
51 real mammograms, including the corresponding 
saliency maps, the real underlying BI-RADS classifications, 
the AI-predicted BI-RADS classifications, and data 
regarding the age and genetic predisposition from the 
respective patients from whom the mammograms 
originate. 

2 • Senior Medical Advisor for AI 

• Supervisor (Researcher KIN 
Center VU) 

• Meeting was mainly about the factors that need to be 
controlled for and the optimal participant profile in 
relation to the medical specialization to whom the 
experiment should be addressed to.  

• In addition, the experiment interface was discussed in 
terms of realism to offer the participants an environment 
that is as authentic as possible. 

3 • Senior Medical Advisor for AI • The functioning of the already existing AI applications in 
mammography was discussed to gain a realistic 
understanding of their inner workings and how they’re 
projected by XAI methods. This was especially helpful for 
the imitation of XAI methods that are already in use in real 
life applications. 

4 • Senior Radiologist • This meeting was mainly about the imitation of an 
additional XAI method (see Chapter 3.2.2 for more 
precise details about the method). The radiologist helped 
us to imitate a new method by providing us with realistic 
method parameters that were as authentic as possible for 
each individual mammography case. Therefore, the 
additional XAI method had to be created manually by us 
with the help of the provided method parameters. 
Furthermore, the radiologist gave us valuable insights and 
tips that resulted from a very similar experiment he and 
his researcher team conducted with medical students 
who also had to classify mammograms with the help of a 
pseudo-AI. 

Table 3:  Overview of preliminary meetings and observations 

 

At the beginning of the experiment design phase, it was decided to build a web-based 

experiment application to distribute the experiment online to the potential participants. This 

method was chosen because in this way the experiment can be addressed to a larger potential 

mass in a shorter time span and the participants can flexibly choose the time to participate in 

the experiment themselves. First, it was brainstormed about the needed functionalities the 
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experiment application must provide (see Chapter 3.2.2) together with a fellow student who 

was writing his master thesis in a related research area and who was also drawing his data 

collection from the conducted experiment. To visualize the experimental setup to better 

coordinate further steps, an experiment protocol was built (see Figure 4). Second, an 

experiment interface prototype was built (see Figure A3) with the online prototyping tool 

Figma (Figma, 2022) to develop a first impression of how the finished application should look 

like. Afterwards, the real experiment application was implemented by the fellow student, who 

has a computer science background. The application was written in HTML, CSS and JavaScript 

and was hosted, along with the underlying MySQL data base (MySQL, 2022), on the cloud 

application platform Heroku (Heroku, 2022). Figure 3 chronically illustrates the process of 

organizing and developing the experiment application. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Timeline for experiment setup 
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Figure 4: Experiment protocol 
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3.2.2 Experimental design and data collection  

To collect the empirical primary data required to answer the hypotheses developed, the 

underlying experiment was conducted in the field of mammography7 and addressed to 

radiology residents who already received mammography training as well as fully trained 

radiologists. The radiologists were asked to read a fixed number of mammograms based on 

the Breast Imaging Reporting and Data System (BI-RADS)8 (Eberl et. al, 2006). During the 

classification task, they were supported by a pseudo-AI (no real AI was operating in the 

background, AI predictions were handmade) that gave predictions about the true BI-RADS 

categories of the underlying mammograms. However, the pseudo-AI was intended to 

sometimes make false predictions on purpose to measure the over-reliance (AB) of the 

participants on the pseudo-AI’s predictions.  

Selected Mammogram cases 

In total, each participant had to read 15 fixed mammograms and classify each from BI-RADS 

category 1 to 59, whereby the pseudo-AI intentionally gave wrong predictions in 8 out of the 

15 cases. 4 of the wrongly predicted cases were omission errors (false negatives, meaning that 

the AI erroneously didn't predict possible cancerous tissue), whereas the other 4 cases were 

commission errors (false positives, meaning that the AI erroneously predicted possible 

cancerous tissue). In 2 of the 8 incorrectly predicted cases, the pseudo-AI made severe 

mistakes. In the first of those 2 severe cases, the pseudo-AI predicted a BI-RADS class 2 

(negative or benign finding), whereas the underlying ground truth was a BI-RADS class 4 

(suspicious abnormality), what resulted in a serious omission error. In the second case, the 

 
7 Mammography is a screening method that uses X‐ray imaging to find breast cancer with the goal to treat cancer 
earlier, when a cure is more likely (Gøtzsche & Jørgensen, 2013). 
 
8 Mammograms (term for breast X-ray image which was covered by Mammography) can be categorized based 
on the Breast Imaging Reporting and Data System (BI-RADS) (Eberl et. al, 2006). The system was developed to 
standardize mammographic reporting, to improve communication, to reduce confusion regarding 
mammographic findings, to aid research, and to facilitate outcomes monitoring (American College of Radiology, 
2016). BI-RADS distinguishes between 7 assessment categories, whereby each category reflects the radiologist’s 
level of suspicion for malignancy: Assessment incomplete (BI-RADS category 0), Negative (1), Benign finding (2), 
Probably benign finding (3), Suspicious abnormality (4), Highly suspicious of malignancy (5), and Known biopsy-
proven malignancy (6) (Eberl et. al, 2006; see Table A1). 
 
9 BI-RADS category 0 is left out because the experiment only allows complete assessment; BI-RADS category 6 is 
left out because this category requires a biopsy of suspicious tissue, however, this is not related to this research 
project which just covers image recognition with the help of AI, therefore this class also falls outside the scope 
of this work. 



21 
 

pseudo-AI predicted a BI-RADS class 4 (suspicious abnormality), whereas the underlying 

ground truth was a BI-RADS class 2 (negative or benign finding), what resulted in a serious 

commission error. These two cases are particularly crucial to monitor how much radiologists 

rely on an AI, even if it makes severe errors that could result in serious negative consequences. 

For the remaining incorrectly predicted cases, only one BI-RADS class is deviant. The remaining 

7 mammograms that were correctly classified by the AI serve the purpose of not arousing too 

much suspicion in the participants towards the pseudo-AI in order to prevent a general 

rejection of the pseudo-AI. This also enables to observe how participants differ between 

correct predictions and incorrect predictions in terms of their interaction with the pseudo-AI. 

For a full overview of all mammogram cases, see Appendix E.  

Precautionary Arrangements 

When conveying the experiment, the participants were explicitly told that they would be 

supported by a real AI during the experiment in order not to arouse suspicion, which could 

distort the participants' answers. Furthermore, we clearly stated before the start of the 

experiment that the data of the participants will be treated with the utmost confidentiality 

and that it will only be used for research purposes. This was done to reassure the participants 

that the data was not passed on to their employer and that they wouldn’t suffer any 

consequences due to a potential poor performance. This should take away potential fears 

from the participants and strengthen their participation. In addition, we advised the 

participants to conduct the experiment in a quiet place to avoid distractions, which could 

affect the participants' concentration and thus the results of the study.  

Preliminary Questions 

In order to control for external effects that could influence the results of the experiment, the 

participants were asked during their experiment registration to answer control questions 

about their current hospital setting they’re working in, the time since their last mammography 

reading, their amount of mammography readings per week, their work experience with CAD 

tools (Computer Aided Decision tools), their work experience with AI-powered tools; and if 

they had experience with CAD- or AI-tools, how long ago the interaction with those respective 

tools has been. Those control variables were created with the guidance of the involved 

radiologists. Chapter 3.3.1 and 4 explain more detailed why exactly these control variables 

were chosen.  
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Classification Interface 

To introduce the classification interface to the participants, one sample case was presented 

before the actual mammography cases started. This case served to explain all functionalities 

of the classification interface by highlighting them and by giving textual advice to the 

participants and to make them aware of the respective available XAI methods (see Figure B1). 

Since the effect of explainability, meaning the amount of information conveyed by XAI 

methods, is the focus of the study, a total of 3 different classification interfaces with different 

available XAI methods were built. The first version does not contain any supporting XAI 

methods and is used by the control group ("No explainability"). In the second version, the AI 

prediction is supported by one XAI method ("Medium explainability"), whereas the third 

version contains two different XAI methods and a “malignancy score” ("High explainability"). 

This gradation of XAI methods between the individual groups is intended to provide different 

levels of information about what factors led the AI to make its prediction. In order to fully 

explain the classification interface, the standard interface without XAI methods will be used 

first to discuss the core functionalities (see Figure 5). In addition, the "High explainability" 

interface is presented in order to go into detail about the selected XAI methods. 

 

 

Figure 5: Standard classification interface layout for the control group without available XAI 

methods and unopened AI prediction 
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1: Index of the current mammography case. The design decision to display the index was made 

to allow participants to gauge how far they already came in the process of the experiment. 

This is intended to prevent them from ending the experiment prematurely due to uncertainty 

about the course of the experiment that is still to come and the duration associated with it. In 

addition, it must be noted that the participants do not have the possibility to work on cases 

that have already been processed. It is therefore not possible to "go back" to the previous 

case. This decision was made in order to prevent the participants from revising and changing 

their decisions in case they develop a distrust towards the pseudo-AI during the course of the 

experiment. 

2: In the middle of the screen, the mammogram image is presented in the craniocaudal view, 

or “CC view” (top-down view, shown on the left side) and the mediolateral oblique view, or 

“MLO view” (side view, shown on the right side) (Andolina & Lillé, 2011). In both views, the 

left and the right breast are shown, whereby the left breast in the CC view actually 

corresponds to the right breast of the patient and vice versa. The same applies to the MLO 

view. By clicking on the mammogram image, it will be enlarged so that individual details on 

the image can be viewed more closely (see Figure B3). This function is intended to mimic a 

“zooming function” that is normally available in real clinical digital imaging applications. The 

implementation was recommended in consultation with an involved radiologist in order to 

mimic the clinical setting as closely as possible. 

3: Information box about the age and genetic predisposition for breast cancer of the patient 

from whom the mammogram originated. This information was incorporated in the interface 

to mimic a more realistic clinical environment and to later refer to this data when providing 

an additional XAI method in the “High explainability” group. 

4: The "Show AI Suggestion" button disappears when pressed, and instead displays the BI-

RADS category prediction determined by the pseudo-AI for the left and right breast (see also 

Figure 7). The decision to display the AI predictions at the click of a button was made to 

empirically measure how quickly participants decide to enlist the help of the AI in their 

personal classification. In order to collect this data, a timer was started at the beginning of 

each mammography case, which measured how long the respective participant needed to 

press the "Show AI suggestion" button for the respective mammography case. 
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5: Radio buttons that serve as an input tool for the participants to enter their BI-RADS 

classification. Participants are forced to give a BI-RADS classification for both breasts, 

otherwise they’re not allowed to proceed with the experiment.  

 

6: Info field that displays a table with 

explanations about the respective BI-RADS 

categories when hovering over it (see Figure 6, 

see Figure B2). This was added as a “look-up” 

option for radiologists who haven't read 

mammograms for a longer time span or are 

generally unsure about the definitions of each 

category.  

   

 

7: The “Submit answer & continue button” saves the given BI-RADS classifications in the data 

base and forwards the participant to the next mammography case. 

 

 

Figure 7: “High explainability” classification interface with opened saliency map and opened 

Relevance Pooling Bar Chart 

Figure 6: BI-RADS explanatory info  
(American College of Radiology, 2016) 
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Since the presence of different XAI methods is essential for this study, their imitation will be 

discussed more in detail using the classification interface of the High explainability group. 

8: In order to provide the participants in the High explainability group with additional 

information about the AI prediction, a "malignancy score" was given next to the predicted BI-

RADS classification. The score could be viewed by moving the mouse over the information 

field to the right of the text "AI BI-RADS proposal:" (see Figure 

8, see Figure B4). The score indicates how high the AI 

estimates the probability of malignant tissue in the 

mammogram. All scores were adapted to the respective BI-

RADS categories and checked for authenticity by an involved radiologist. To record to what 

extend the participants engaged with the additional information conveyed by the “malignancy 

score”, it was measured how often the participants opened the score by moving the mouse 

over the info field and for how long. However, since the score does not provide any additional 

information on how the AI works and why it arrived at a specific prediction, the malignancy 

score will not be considered as an XAI method in the further course of this study.  

To set a foundational background understanding for the chosen design choices 

regarding the imitated local XAI methods, the two selected methods are elaborated more 

into detail on the following page.  

 

 

 

 

 

 

 

Figure 8: Malignancy score 
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Figure 9: (1) Real implemented Gradient-weighed class activation mapping (Grad-CAM) for 
mammograms having breast cancer (Suh et al., 2020) and (2) real Relevance Pooling Bars (Samek et 
al., 2021) that are showing the feature-wise contributions of the input variables ‘Composition’ and ‘Age’ 
for an undefined prediction. Contrastingly, in the bottom line, (3) a saliency map from the experiment 
from this study is shown (imitation of Grad-CAM) as well as a (4) feature contribution bar chart 
(imitation of Relevance Pooling methods). 

 

9: In the field of Computer Vision, the basic principle of XAI methods is to highlight areas of an 

image that have the highest impact on the prediction of a model (Reyes et al., 2020). Those 

highlighted areas act as knowledge generators as they intuitively lead the model user from 

the observed model outcomes to potential hypothesis about the underlying data (Vellido, 

2019). To leverage the quality of the visualization, attribution-based approaches such as 

saliency maps are used (Linardatos et al., 2020). Gradient-weighted Class Activation Mapping 

(Grad-CAM), one of the most common used local methods in the field of Image Classification, 

highlights areas of an input image that drive the prediction of a model by color-coding 

important pixels to create a saliency map (Suh et al., 2020) (see Figure 9). The importance of 

these areas can be obtained by investigating the flow of the gradients of a Neural Network 

(NN) calculated from the model’s output to the input image (Barredo Arrieta et al., 2020; 

Reyes et al., 2020). In the underlying experiment, the "artificial" saliency maps provided by 
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one of the supportive radiologists were used to mimic real saliency maps that are originally 

created by XAI methods (e.g., GRAD-CAM) and thus provide participants with an opportunity 

to better understand the process behind the respective AI outputs (see Figure 9). Saliency 

maps are available for participants in the Medium- and High explainability group and can be 

superimposed on the actual mammogram using the "Show Heatmap" button (see Figure B1). 

The green area of the saliency map indicates that the AI expects no malignant tissue in the 

respective region, while the yellow area indicates a low probability for malignant tissue. The 

red area indicates a high probability for malignant tissue in the respective regions. The button 

"Hide Heatmap" can be used to close an opened saliency map. Again, to record to what extend 

the participants engaged with the additional information conveyed by the saliency map, it was 

measured how often they switched the saliency map on and off for each case. In addition, the 

total time the saliency map was opened per case was measured. 

10: Another method to deliver local explanations in the domain of XAI is called Relevance 

Pooling (Samek et al., 2021). This method is used based on the assumption that end-users may 

not be interested in the importance of every single data point in terms of every single input 

feature (Samek et al., 2021). A more relevant information to the user would be the overall 

contribution of a subgroup of features in the input on the predicted output (Samek et al., 

2021). The method aims to explain individual predictions or a models’ inner workings with 

respect to a set of high-level concepts, either by their presence in a models’ learned 

representation or their importance to a particular model outcome (Evans et al., 2022). These 

high-level concepts may be represented as visualizations in the form of bar charts, or in terms 

of domain-specific natural language (see Figure 9) (Evans et al., 2022). In order to provide the 

High explainability group with an additional XAI method next to the saliency map, it was 

decided to imitate the Relevance Pooling method (see Figure 9). Due to the fact that 

abnormalities in mammograms are assessed on the basis of certain superordinate categories 

(Magny et al., 2021), the Relevance Pooling method is well suited for the purpose of the 

underlying experiment. If a mass is seen in the mammogram, it is evaluated based on three 

descriptions: shape, margin, and density (Magny et al., 2021). In addition, detector uniformity 

is an important parameter in digital mammography to guarantee a level of image quality 

(Baldelli et al., 2020). Together with the age and genetic predisposition of the patient, the 

descriptors shape, margin, density and the parameter of uniformity are all used as high-level 

concepts to imitate the Relevance Pooling method. As a form of representation, a bar chart 
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was chosen, whereby the associated bars indicate to what extent the single high-level 

concepts influenced the AI to report benign or malignant finding. All Relevance Pooling Bar 

Charts (RPBCs) were developed with the help of an involved radiologist to ensure authenticity. 

The RPBCs could be accessed by moving the mouse over the big information field above the 

"Submit answer & continue" button. However, since it is also measured in the background 

how often and for how long a participant opened a respective RPBC for one case, the RPBC 

was automatically closed again after it had been open for 10 seconds continuously. This 

decision was made to counteract the potential behavior of participants who keep the RPBC 

continuously open but not paying attention. 

Post-hoc Questions 

At the end of the experiment, the participants were asked to indicate their trust in the AI 

decision throughout the experiment and for how helpful they perceived the AI and the 

supporting XAI methods as well as the malignancy score in general. A Likert scale was used as 

an input method (see Figure B5). The post-hoc questions were asked to measure the overall 

impact of XAI methods on radiologists' trust in using AI and to control for later biased results 

due to possible poor design choices by imitating real XAI methods. 
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 Table 4: Overview of the most relevant collected datapoints during the experiment 

 
10 It is important to note that the names in brackets reflect the naming scheme of the variables in the database. 
The names for the used variables in this study will deviate from this this naming scheme. 

Experiment section What is measured?10 How is it measured? 

Preliminary control 

questions 

Hospital Seeting (control_hosptial)  Dropdown menu (possible selections: “Academic Hospital”, “non-academic 

Private Hospital”, “non-academic Public Hospital”, “Other”) 

Time since last mammography reading 

(control_last_mamm)  

Dropdown menu (“Within last week”, “Within last month”, “Within last 6 

months”, “Within last year”, “More than a year ago”) 

Mammography readings per week 

(control_nr_mamms_weekly)  

Dropdown menu (”Less than 5”, “Between 5 and 10”, “Between 10 and 20”, 

“Between 20 and 50”, “More than 50”) 

Experience with Computer aided decision (CAD) 

tools (control_cad_exp) 

Radio Button (possible selections: “Yes” or “No”) 

Experience with AI-powered decision tools 

(control_ai_exp)  

Radio Button (“Yes” or “No”) 

Time since last CAD/AI tool interaction 

(control_exp_last) 

Dropdown menu (”Within the last week”, “Within the last month”, “Within 

the last 6 months”, “Within the last year”, “More than a year ago”) 

Mammogram 

Classification task 

Time spent per case (total_time_class_submit) Amount of time spent for classifying single mammogram (measured by a 

timer in ms) 

Time spent in total for all cases 

(total_time_all_tasks) 

Timestamp Classification Task finished – Timestamp Classification Task 

started 

Time spent until a participant opened the AI BI-

RADS prediction (total_time_ai_prediction) 

Amount of time it took a participant to opened the AI BI-RADS prediction per 

case (measured by a timer in ms) 

Time spent until a participant accessed the 

saliency map (total_time_open_heatmap)  

Amount of time it took a participant to open the saliency map for the first time 

per case (measured by a timer in ms) 

BI-RADS class given for left breast 

(birads_classification) 

Radio Button (possible selections: 1-5) 

BI-RADS class given for right breast 

(birads_classification) 

Radio Button (possible selections: 1-5) 

Number of times saliency map was opened 

(total_visits_heatmap) 

Number of times saliency map was opened via “Open Heatmap” button per 

case (measured by a counter variable) 

Number of times Relevance Pooling Bar Chart was 

opened (total_visits_contr_attr) 

Number of times Relevance Pooling Bar Chart was opened via mouse 

hovering over info field per case (measured by a counter variable) 

Time saliency map was opened 

(total_time_heatmap) 

Amount of time saliency map was opened per case (measured by a timer in 

ms) 

Time Relevance Pooling Bar Chart was opened 

(total_time_contr_attr) 

Amount of time saliency map was opened per case (measured by a timer in 

ms) 

Post-hoc questions 

Perceived trust in the AI suggestions 

(post_ai_trust)  

Likert Scale (possible selections: “Strongly Distrust”, “Distrust”, “Somewhat 

Distrust”, “Undecided”, “Somewhat Trust”, “Trust”, “Strongly Trust”) 

Perceived usefulness of AI suggestions 

(post_ai_usefulness)  

Likert Scale (“Very Useless”, “Useless”, “Somewhat Useless”, “Undecided”, 

“Somewhat Useful”, “Useful”, “Very Useful”) 

Perceived usefulness of saliency map 

(post_heatmap_usefulness)  

Perceived usefulness of malignancy score 

(post_prob_distr_usefulness) 

Perceived usefulness of Relevance Pooling Bar 

Chart (post_contr_attr_usefulness) 
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3.3 Operationalization 

The concepts of this study must be operationalized in order to carry out an efficient and 

precise data analysis. By doing so, it was made sure that the operationalized concepts fulfill 

the following criteria: correspondence, exclusiveness, completeness, and efficiency (Yin, 

2003). This chapter describes the operationalization of the abstract concepts of explainability, 

over-reliance, and analytical interaction to turn them into empirically measurable 

observations. Additionally, the control variables and the reasoning for including them in the 

analysis are also explained. 

Independent variable 

First, the concept of explainability, as described in Chapter 2.2, can be thought of as a model's 

active feature, referring to any action or procedure conducted by a model with the goal of 

clarifying or detailing its internal functions (Barredo Arrieta et al., 2020). In this study, 

explainability is therefore measured based on the number of available local XAI methods. Due 

to the fact that the experiment application incorporates two different local XAI methods, 

namely the saliency map and the RPBC, the variable explainability will be categorized based 

on the availability of these methods. The availability of none of the listed XAI methods is 

labeled as “No explainability” (control group), the availability of only the saliency map is 

labeled as “Medium explainability”, and the availability of the saliency map supported by the 

RPBC is labeled as “High explainability”. The group membership was dummy coded for each 

participant. 

Dependent variables11 

Second, as already mentioned in Chapter 2.3, reliance will be described as the behavior of 

humans to form dependable habits towards another agent (human or non-human) (Baier, 

1986). Consequently, over-reliance is viewed as the dependable habit to follow incorrect AI 

 
11 The statistical assumption of independence of observations requires that every participant in a sample is only 
counted once. If a participant appears multiple times in the same sample, each time as an independent 
observation, the statistics would be biased in the favor of the participant himself and not be representative of a 
true sample of independent observations. In the case of the underlying experiment, each participant classified 
15 mammograms and generated therefore 15 single datapoints, however those 15 datapoints are not 
independently collected from each other since they are collected from the same participant. By treating those 
15 data points independently, it can be argued that they are skewed in the favor of the participant himself, which 
would bias the effect of the treatments (XAI methods). Thus, the sums of the dependent variables over-reliance 
and analytical interaction were calculated per participant in order to prevent the occurrence of this bias. 
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predictions (Liu et al., 2021; Buçinca et al., 2021), or to put other words, to fall into AB. 

Therefore, to calculate the over-reliance of one participant, the sum of all mammography 

cases is taken in which the participant has classified the same BI-RADS category as the AI, but 

only when the AI intentionally specified an incorrect BI-RADS class12, and in those cases also 

only the classification of that half of the breast is taken into account, in which the error 

occurred. 

Lastly, related to chapter 2.4.1, analytical thinking (System 2 thinking) is defined as the 

conscious and thoughtful reasoning of information and arguments (Kahneman, 2003; 

Kahneman, 2011), whereas interaction is defined as the human behavior and communication 

with a computer to perform a task (Gurcan, 2020). Therefore, in this study analytical 

interaction refers to the thoughtful human behavior and communication with XAI methods 

and will be used as a proxy to capture the cognitive engagement of the participants with the 

XAI methods. To measure analytical interaction empirically, it will be looked at how often a 

participant opened a particular XAI method during the assessment of one case (all 15 

mammography cases are taken into account to measure analytical interaction). If several XAI 

methods are available, the number of openings of the individual methods is added together. 

Participants have the opportunity to interact (depending on their group membership) with a 

saliency map and a RPBC. In the case of the saliency map, they have the option of switching 

the map on or off for any length of time by using a button. In case of the RPBC, they have the 

option to hover over a field to view the chart. However, the chart disappears after 10 seconds. 

An "analytical interaction" with the saliency map is defined as the click of the button that 

opens the saliency map, but only if the saliency map was opened more than once. This ensures 

that only cases are taken into account in which the participant actively interacts with the 

saliency map. In cases where the participant leaves the saliency map open all the time by 

opening it only once, it cannot be ensured that a participant interacts analytically with the 

saliency map and not with other functionalities of the experiment application. An "analytical 

 
12 Another reason for including only cases in which the AI made an incorrect prediction is that this allowed us to 
measure the extent to which the participant is influenced solely by the AI prediction. If cases were included in 
which the AI was correct, it can be assumed that the participant very likely came to the correct BI-RADS 
classification on his or their own, therefore the predicted AI class and the classification from the participant 
would be equal not because of over-reliance on the AI, but because of the domain knowledge of the radiologist. 
However, if the AI prediction is wrong and the participant chooses a BI-RADS classification that is close to the 
wrong prediction, it can be assumed that the participant was influenced by the wrong AI classification. 
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interaction" with the RPBC is defined as the hovering over the info field to open the chart but 

only if the bar plot remained open for 2 seconds afterwards. The time condition ensures that 

mouse movements that were accidentally moved over the info field to open the RPBC are not 

recorded as analytical interaction. The total analytical interaction for one mammography case 

consists of the sum of the “analytical interactions” with all available XAI methods13. 

Control variables 

Some collected variables from the underlying dataset were modified14 and included as control 

variables in the analysis based on alternative and causal explanations. Integrating a set of 

control variables can explain confounding factors between a treatment and an outcome, 

avoiding skewed causal impact estimates (Hünermund & Louw, 2020). Below the used control 

variables are elaborated. 

First, it will be controlled for the binary dummy variable Last Reading less than 1 week 

(last_mamm_1_week), which indicates whether a participant read a mammogram within the 

last week (1) or the last reading has been longer than one week (0) was well as the binary 

dummy variable More than 20 readings weekly (mamms_weekly_more_20), which indicates 

whether a participant reads more than 20 mammograms weekly (1) or less than 20 (0). It is 

assumed that radiologists who just recently read an increasing number of mammograms on a 

weekly basis will be able to identify abnormalities in a mammogram more accurately and 

quickly in a substandard artificial clinical setting without additional cognitive exertion owing 

to their routine. It was controlled for this possible impact since this might result in less over-

reliance due to routine characteristics of the participants, biasing the effect of explainability. 

Second, the binary variable Academic Hospital (hosp_academic) is also included as a 

control variable, which categorizes whether a participant works in academic hospital (1) or a 

 
13 Participants in the No explainability group don’t have any opportunity to analytically interact with XAI methods 
since no XAI methods are available for this group; Participants in the Medium explainability group  have only the 
opportunity to analytically interact with the saliency map since this is the only available XAI method for this 
group; Participants in the High explainability group have the opportunity to analytically interact with the saliency 
map and the RPBC since all XAI methods are available for this group. 
 
14 Some categories of the categorical control variables control_last_mamm and control_nr_mamms_weekly were 
not all equally distributed between the participants across the different explainability groups (see Figures C2, C3) 
and sometimes not available at all due to the low participation count. Therefore, to still have the opportunity to 
control for both effects, the categories per control variable were merged from 4 categories to 2 categories. 
Therefore, the control variable control_last_mamm was transformed to the binary control variables. 
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non-academic hospital (0). This variable was added in consultation with the Senior Medical 

Advisor for AI, who assumed that in academic hospitals, radiologists probably have been 

already confronted with AI-based solutions, which means that there is greater awareness and 

readiness regarding AI. Since this could cause greater distrust towards the pseudo-AI among 

radiologists employed in academic hospitals, it was controlled for this effect. In Chapter 4, this 

effect is also listed as a finding and will be discussed more in detail. 

Lastly, the binary variable CAD/AI experience (exp_cad_ai)15 is included as a control 

variable, which indicates whether a participant has experience with clinical CAD/AI systems 

(0) or no former experience with clinical CAD/AI systems (0). This variable was also added in 

consultation with the Senior Medical Advisor for AI, who noted that a lot of radiologists had 

bad experiences with CAD in the past and could therefore be negatively pre-occupied about 

AI. Analogous to the previous discussed control variable Academic Hospital, this could cause 

greater distrust towards the pseudo-AI among radiologists who already had experience with 

CAD, wherefore it was controlled for this effect. Again, in Chapter 4 this effect is also listed as 

a finding and will be discussed more in detail. 

 

 

 

 

 

 

 

 

 

 

 

 
15 All participants who stated to have CAD experience, also indicated to have AI experience, wherefore only one 
variable is created to control for both effects 
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Variables Measurement 

Explainability 

Group membership (no XAI methods available = “No 

explainability group” (control group); one XAI method 

available = “Medium explainability group”; two (all) XAI 

methods available = “High explainability group”); the 

group membership was dummy coded for each 

participant 

Over-reliance 

Over-Reliance per participant: Sum of all mammography 

cases in which the participant has classified the same BI-

RADS category as the AI, but only when the AI 

intentionally specified an incorrect BI-RADS class (Buçinca 

et al., 2021), and in those cases also only the classification 

of that half of the breast is taken into account, in which 

the error occurred. 

Analytical Interaction 

Analytical interaction with the saliency map: Number of 

clicks of the button that opens the saliency map, but only 

if the saliency map was opened more than once. 

 

Analytical interaction with the RPBC: Number of mouse 

hovering’s over the info field to open the RPBC (only mouse 

hovering’s are taken into account if the bar plot remained 

open for 2 seconds afterwards). 

 

Total analytical interaction per participant: Sum of the 

“analytical interactions” with all available XAI methods 

over all cases. 

Control Variables 

Last Reading less than 1 week 

(last_mamm_1_week) 

Binary variable (1 = participant read mammogram within 

the last week, 0 = the participants’ last mammogram 

reading was longer ago than one week) 

More than 20 readings weekly 

(mamms_weekly_more_20) 

Binary variable (1 = participant reads more than 20 

mammograms weekly, 0 = participant reads less than 20 

mammograms weekly) 

Academic Hospital 

(hosp_academic) 

Binary variable (1 = participant works in academic 

hospital, 0 = participant works in non-academic hospital) 

CAD/AI experience (exp_cad_ai) 
Binary variable (1 = participant has experience with 

CAD/AI, 0 = participant has no experience with CAD/AI) 

Table 5: Overview of the operationalization of the main concepts and control variables 
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3.3.1 Refined hypotheses and conceptual model 

The hypotheses stated in Chapter 2 are refined to make the data analysis more specific 

regarding the aforementioned concepts that are going to be investigated in this study. 

In order to test the increasing volume of accessible information conveyed by XAI 

methods, two treatment groups were introduced. While participants in the Medium 

explainability group (treatment group 1) are only provided with one XAI method (saliency 

map) to increase the available flow of information compared to the No explainability group 

(control group), the High explainability group is provided with an additional XAI method 

(RPBC) to increase the available flow of information compared to the Medium explainability 

group. To better describe and analyze the effect of an increased explainability on the variables 

analytical interaction and over-reliance, the stated hypotheses from Chapter 2 are split: 

Original Hypotheses Refined Hypotheses 

H1: An increasing number of available XAI 

methods does not stimulate decision-makers to 

increase their analytical thinking about the 

reasoning behind AI outputs. 

 

H1a: The analytical interaction of participants in the 

Medium- and High explainability group does not 

significantly differ from 0. 

H1b: The analytical interaction of participants in the High 

explainability group does not significantly differ from the 

analytical interaction of participants in the Medium 

explainability group. 

H2: An increasing number of available XAI 

methods leads to over-reliance of decision-makers 

on AI outputs. 

H2a: Participants in the Medium explainability group will 

show a significantly higher over-reliance than participants 

in the No explainability group. 

H2b: Participants in the High explainability group will show 

a significantly higher over-reliance than participants in the 

Medium explainability group. 

Table 6: Refined Hypotheses 

 

H1a was set up to first check whether the provision of XAI methods causes any 

analytical interaction at all. H1b is further testing whether the extension of a second XAI 

method to an already existing one significantly increases the analytical interaction of the 

participants in the underlying sample or not. H2a and H2b each test whether an increase in 

explainability (adding new XAI method) incrementally increases over-reliance. 
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Figure 10: Refined Conceptual Model 

 

3.4 Data Analysis 

The data analysis of this thesis is split into three parts. First, the collected observations 

obtained from the collaboration with the involved radiologists were analyzed. Second, it was 

extensively dealt with the evaluation of descriptive patterns within collected data to analyze 

the behavior of the radiologists throughout the experiment. The last part of the data analysis 

deals with statistical hypothesis testing of the stated hypotheses.  

In order to setup up the experiment application, it was extensively communicated via 

E-mail with the involved radiologists. The resulting data from the E-mail traffic was well 

documented and directly taken into account while designing and implementing the 

experiment application. The same applies for the observations from the meetings with the 

involved radiologists. However, in Chapter 4.1, the key findings from the collaboration with 

the involved radiologists are elaborated in greater detail and it will be explained how they 

affected the experiment design- and implementation process.  

Due to the very low number of participants, it was extensively dealt with the evaluation 

of descriptive patterns within the dataset. Therefore, cross-sectional descriptive patterns 

regarding the effect of explainability on over-reliance and analytical interaction were 

investigated. Additionally, insights regarding the participants' actions throughout the 

experiment were investigated in a cross-sequential descriptive analysis (McBurney & White, 

2009; Mitchell & Jolley, 1988). Lastly, the behavior of the participants in relation to the offered 

XAI methods is evaluated in a descriptive manner. 
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To answer the hypotheses stated in the previous chapter regarding the dependent 

variable analytical interaction (H1a and H1b), two one-sample t-tests were conducted to 

observe if the analytical interaction is significantly different from 0, with the purpose to test 

whether the participants in those two treatment groups analytically interacted with the XAI 

methods at all. Also, a two-sample t-test was conducted to test for a significant difference 

between the Medium- and High explainability group. The results of the different t-tests can be 

found in Table 11. 

 To answer the hypotheses stated in the previous chapter regarding the dependent 

variable over-reliance (H2a and H2b), multivariate linear regressions were conducted. To 

observe a difference in over-reliance between the three explainability groups while also 

controlling for external effects, 3 different models where build, whereas in each model a new 

baseline is set. The results of the different regressions can be found in Table 10. 

 First, Model 1 included a regression with the dependent variable over-reliance and all 

control variables mentioned in Table 5.: 

 

Second, in Model 2, the difference in over-reliance (DV) between the Medium 

explainability group (dummy coded IV 1) and the No explainability group was tested as well as the 

difference between the High explainability group (dummy coded IV 2) and the No explainability 

group, whereas the No explainability group builds the baseline (dummy for No explainability not 

included in regression). It will be controlled for the same effects as in Model 1: 

Lastly, in Model 3, the difference in over-reliance (DV) between the No explainability group 

(dummy coded IV 1) and the Medium explainability group was tested as well as the difference 

between the High explainability group (dummy coded IV 2) and the Medium explainability group, 

over_reliance = last_mamm_1_week + mamms_weekly_more_20 + hosp_academic + exp_cad_ai 

 

over_reliance = medium_explainability + high_explainability + last_mamm_1_week + 

mamms_weekly_more_20 + hosp_academic + exp_cad_ai 
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whereas the Medium explainability group builds the baseline (dummy for No explainability not 

included in regression). Again, the control variables mentioned in Table 5 were included: 

 

3.5 Ethical Considerations 

Within this thesis, many ethical aspects about the collected data from the individuals who 

participated in this study were considered. Therefore, the primary objective was to avoid 

causing any harm or disadvantage to individuals engaged or impacted in this study. First, 

before collaborating with the introduced radiologists by our supervisor in order to gain expert 

advice on how to approach the underlying lab experiment, we disclosed our research purpose 

to them to show full transparency and to clarify our intentions. The meetings with the 

radiologists were not recorded and no personal sensitive data about their ethnicity, political 

opinion, or religion were captured. The medical materials (e.g., mammogram images) made 

available by the involved radiologists were treated with the utmost confidentiality and only 

used within the scope of the underlying research purposes. The same applies to the collected 

research-related data of the participants (e.g., given BI-RADS classifications) as well as their 

collected personal sensitive data (e.g., e-mail addresses). This data was only shared with the 

fellow student, who was also writing his master's thesis in the same research setting, and my 

supervisor (Prof. Dr. M.H. Rezazade Mehrizi). The data was never passed on to third parties 

and was anonymized. Before the participating radiologists were able to start the experiment, 

the previous mentioned aspects regarding the treatment of their data were clearly explained 

and they had to give consent via a checkbox that their provided data can be used for research 

purposes within the scope of the conducted lab experiment (see Figure B6). In addition, an 

ethical approval from the VU Amsterdam for a closely related experiment in this research field 

conducted by my supervisor was attached to show that the proposed research is in line with 

the ethical regulations of the university (see Appendix F). 

over_reliance = no_explainability + high_explainability + last_mamm_1_week + 

mamms_weekly_more_20 + hosp_academic + exp_cad_ai 
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4 Findings 

This chapter presents the collected findings from the experimental design phase as well as the 

findings resulting from analyzing the collected data. First, the findings obtained through the 

experiment design process are presented. Furthermore, the findings from the descriptive 

analysis of the data are presented along with the findings from testing the given hypotheses. 

4.1 Findings in the experimental design phase 

In the design phase of the experiment, numerous helpful insights about the realistic imitation 

of an AI application in radiology were gained. This chapter presents the most important 

findings obtained from external feedback from champions in the field of radiology, which 

primarily concern the external effects that need to be controlled for as well as the realistic 

imitation of the classification interface. 

Control effects 

In meeting No. 2 (see Table 3), the main focus was placed on work- and experience related 

characteristics of the participants that could bias the collected data. Besides discussing the 

control variables regarding the participants’ routine in mammogram reading (“Time since last 

mammography reading”, “Mammography readings per week”), the Senior Medical Advisor for 

AI advised to also control for the participants’ previous experience with CAD and AI. He argued 

that some participating radiologists may be suspicious of the pseudo-AI not because of the 

intentional wrong answers, but due to previous bad experiences with CAD systems in their 

real working environment. This could mean that some participants, who have previously 

worked with CAD systems, may not pay much attention to the pseudo-AI from the outset, 

distrust it and reach their results regardless of the given prediction from the pseudo-AI and 

the available XAI methods. The Senior Medical Advisor for AI explicitly stated: 

 

“A lot of radiologists had bad experiences with CAD in the past and could therefore be 

negatively pre-occupied about AI.” [Meeting No. 2, Senior Medical Advisor for AI] 
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This prompted us to ask the participants about their former CAD- and AI experience in 

the scope of the preliminary control questions (“Experience with Computer aided decision 

(CAD) tools”, “Experience with AI-powered decision tools”, “Time since last CAD/AI tool 

interaction”).  

Furthermore, the Senior Medical Advisor for AI noted the difference between an 

academic and non-academic hospital setting in relation to the depth of medical specialization 

and experience with new research topics. He explained that “the smaller the hospital, the 

higher the chances are that radiologists have to do “general” work, which means they don’t 

have the same level of expertise as an academic radiologist in a specific body area such as 

breasts. In academic hospitals the work is often done by well-trained residents, under 

supervision of an expert in a specific domain” (Senior Medical Advisor for AI). He further 

stressed the function for research and education in an academic hospital due to the link to a 

university, whereby he assumes: 

 

“In academic hospitals the radiologists probably have been confronted already one way or 

another with AI-based solutions, which means that there is greater awareness and readiness 

regarding AI.” [E-Mail Exchange, Senior Medical Advisor for AI] 

 

To control for the possible effect between deeper field specializations in 

mammography as well as different levels of AI experiences based on the hospital setting, the 

participants were asked about their current hospital setting in which they are employed in the 

scope of the preliminary control questions (“Hospital Setting”). 

Authentic interface imitation 

Furthermore, in Meeting No. 2 (see Table 3) the experiment application was discussed in 

relation to its realistic imitation of a real AI-aided decision support system in order to offer the 

participants an environment that is as authentic as possible. While presenting a first prototype 

to the Senior Medical Advisor for AI to gain feedback, he noticed that our experiment 

application is missing a zooming function that would offer the participating radiologists a 

better opportunity to observe small abnormalities in the mammograms. He explained that 

conventional mammogram reading software has a zooming function by default that allows 
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Figure 11: Implemented zooming function; (1) is showing the standard view; 
(2) is showing the zoomed view 

(1)  (2)  

radiologists to examine even the smallest abnormalities at a granular level. In order to remain 

close to a real clinical setting, the Senior Medical Advisor for AI advised: 

 

“A zooming function is regarded as an absolute standard that radiologists expect when 

reading mammograms, its implementation is essential for an authentic imitation of a real 

clinical environment and the least you could offer them.” [Meeting No. 2, Senior Medical 

Advisor for AI] 

 

To comply with this insight, we decided to implement a zooming function into the 

classification interface of the experiment application (see Figure 11) to increase the realism of 

the application and to offer the participants an opportunity to enhance the detection of 

abnormal tissue. 

 

 

 

 

 

 

 

 

 

 

BI-RADS classification scheme disagreement 

After launching the experiment, we received a remark by one of the participants noting that 

“the AI classified all mammograms that did not show any masses with a BI-RADS 2 as the 

lowest score, where I (and my colleagues) would have given a BI-RADS 1 instead” (Participating 

Radiologist). Since this would mean a serious distortion of the results given by the participants, 
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consultation was held with the Senior Radiologist, who provided us with the mammograms 

and the associated BI-RADS classes (ground truth and falsified pseudo-AI classes). He 

responded:  

 

“This was more or less a conscious choice. There is some debate, and some radiologists seem 

to be hesitant to ever give a BI-RADS 1 as there is probably always something where one 

could debate if it shouldn’t be BI-RADS 2.” [E-mail Exchange, Senior Radiologist] 

 

The Senior Radiologist further added that “in terms of clinical management, they [BI-

RADS 1 and BI-RADS 2] are kind of interchangeable” (Senior Radiologist). Due to the fact that 

the experiment was already promoted at the time the outside radiologist remarked his 

discrepancy and data was already being collected, no more adjustments were made to the 

implemented BI-RADS classes in the experiment itself. However, this finding has a significant 

impact on the further course of the data analysis regarding the dependent variable over-

reliance. In order to control for the alternating use between the BI-RADS classes 1 and 2, both 

classes are treated as one combined class in the further course of the data analysis. 
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No. 
Design phase findings 

category 
Findings quote 

Influence on the experiment 

design/data analysis 

1 Control effects 

“A lot of radiologists had bad experiences 

with CAD in the past and could therefore be 

negatively pre-occupied about AI.” 

[Meeting No. 2, Senior Medical Advisor for 

AI] 

Adding of preliminary control questions 

about the CAD- and AI experience of a 

respective participant (“Experience with 

Computer aided decision (CAD) tools”, 

“Experience with AI-powered decision 

tools”, “Time since last CAD/AI tool 

interaction”). 

“In academic hospitals the radiologists 

probably have been confronted already one 

way or another with AI-based solutions, 

which means that there is greater 

awareness and readiness regarding AI.” [E-

Mail Exchange, Senior Medical Advisor for 

AI] 

Adding of preliminary control question 

about the hospital setting a respective 

participant is currently working in 

(“Hospital Setting”). 

2 
Authentic interface 

imitation 

“A zooming function is regarded as an 

absolute standard that radiologists expect 

when reading mammograms, its 

implementation is essential for an authentic 

imitation of a real clinical environment and 

the least you could offer them.” [Meeting 

No. 2, Senior Medical Advisor for AI] 

Implementation of zooming function into 

the classification interface of the 

experiment application (see Figure 11). 

3 
BI-RADS classification 

scheme disagreement 

“There is some debate, and some 

radiologists seem to be hesitant to ever give 

a BI-RADS 1 as there is probably always 

something where one could debate if it 

shouldn’t be BI-RADS 2.” [E-mail Exchange, 

Senior Radiologist] 

BI-RADS classes 1 and 2 are treated as one 

combined class in the further data 

analysis. 

Table 7: Findings experimental design phase summary 
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4.2 Descriptive Analysis  

4.2.1 Background Analysis and Control variables 

Since the experiment was mainly promoted by the Senior Medical Advisor for AI on the basis 

of word-of-mouth in the Netherlands, it is assumed that most of the participants are employed 

at a Dutch hospital. However, the experiment was also promoted via LinkedIn and by the 

European Society of Medical Imaging Informatics (EuSoMII) network, a non-profit healthcare 

organization that aims to connect radiologists, radiology residents, radiographers, data 

scientists and informatics experts from all over Europe (EuSoMII, 2022), whereby it is assumed 

that the demographical background of possible non-Dutch participants is quite diverse. No 

demographic information about the participants was collected. A total of 16 (prospective) 

radiologists with mammography training started the experiment. However, for the data 

analysis, only those participants were taken into account who fully completed the experiment, 

meaning that they answered all control questions, fully classified all 15 mammogram cases 

and answered all post-hoc questions. Based to these requirements, 3 participants were 

excluded because of an unfinished experiment status. Furthermore, only mammogram 

classification cases were considered as valid for the further data analysis in which the 

participants actually opened the AI prediction via the corresponding button (see Figure 5). This 

condition had to be met to ensure that only cases are considered for the data analysis in which 

the participants actually dealt with the given AI prediction for the respective case. In 32 

individual classification cases, the AI prediction was never opened, whereby these cases were 

not further considered. One participant in the control group didn’t use the AI at all, what 

resulted in a complete exclusion. This left a total of 12 valid participants. Lastly, the data was 

cleaned for 2 more single classification cases, in which the corresponding participants needed 

far more than 10 minutes to classify the single mammogram case without any interaction with 

the classification interface. 
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Characteristic Absolute Frequency Relative Frequency 

Participant Group   

No explainability (Control) 4 33,3 % 

Medium explainability (Treatment 1) 4 33,3 % 

High explainability (Treatment 2) 4 33,3 % 

Hospital Setting   

Academic 5 41,6 % 

Non-academic public 7 58,3 % 

Last Mammogram Reading   

Less than 1 week ago 7 58,3 % 

Less than 1 month ago 1 8,3 % 

Less than 6 months ago 2 16,7 % 

More than 1 year ago 2 16,7 % 

Readings per Week   

More than 50  2 16,7 % 

Between 20 and 50 3 25 % 

Between 10 and 20 3 25 % 

Less than 5 4 33,3 % 

Experience with CAD/AI   

No experience 5 41,6 % 

Yes, less than 1 week ago 2 16,7 % 

Yes, less than 1 month ago 2 16,7 % 

Yes, less than 6 months ago 0 0 % 

Yes, more than 1 year ago 3 25 % 

Table 8: Distribution of the participants based on their characteristics obtained from the preliminary 
control question 

 

4.2.2 Preliminary Data Analysis 

Due to the very low number of participants, it was extensively dealt with the evaluation of 

descriptive patterns within the dataset in order to gain insights to answer the RQ. By further 

examining the underlying data, cross-sectional descriptive statistics regarding the effect of 

explainability on over-reliance and analytical interaction were generated (see Table 9). 

Additionally, insights regarding the participants' actions throughout the experiment were 

investigated in a cross-sequential descriptive analysis. Lastly, the behavior of the participants 

in relation to the offered XAI methods is evaluated in a descriptive manner. 
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Figure 12: Distribution of the independent variables over-reliance (left graph) and analytical interaction (right graph) 
(the red dot indicates the mean, the box represents the Interquartile Range (IQR) between the 25th and 75th percentile and the black line inside the 
box represents the median) 

Cross-sectional descriptive analysis 

In order to get a comprehensive overview of the outcomes of the experiment with regard to 

the dependent variables, the findings in this section are presented in a cross-sectional way. 

 

Table 9: Descriptive statistics per participant  

N = 12 participants 
1 is calculated only based on cases where the pseudo-AI gave wrong predictions; BI-RADS class 1 and 2 are treated as the same 
class 
2all cases are taken into account 
3 Control group; Participants in the No explainability group haven’t had access to XAI methods, therefore the DV analytical 
interaction is not measurable for this group 

 

 

  

  

 

 

 

 

 

 DV Over-reliance1 Analytical Interaction2 Time spent for all classification 

tasks2 (in min.) 

Groups Min Max Mean SD Min Max Mean SD Min Max Mean SD 

No explainability3 

(n = 4) 

 2 5 3.5 1.29 NA NA NA NA 4.42 18.83 11.8 6.12 

Medium 

explainability 

(n = 4) 

 1 5 2.75 1.71 13 31 19.75 7.89 6.74 12.52 9.49 2.8 

High explainability 

(n = 4) 

 5 7 5.75 0.96 12 37 22.5 12.56 5.97 15.89 13.19 4.82 
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Based on the cross-sectional descriptive statistics (see Table 9), it can be found that 

participants in the High explainability group showed the highest over-reliance on average (M 

= 5.75, SD = 0.96), whereas participants in the Medium explainability group showed the lowest 

over-reliance on average (M = 2.75, SD = 1.71). However, it must be noted that the overall 

range for over-reliance between participants in the High explainability group is rather constant 

(Min. = 5, Max. = 7), whereas the range for over-reliance in the remaining groups exhibits a 

higher span (between 1 and 5). This indicates that both low and high over-reliance scores occur 

in the No explainability group and Medium explainability group, whereas only high over-

reliance scores exists in the High explainability group. 

Additionally, it can be shown that the analytical interaction is slightly higher on average 

in the High explainability group (M = 22.5, SD = 12.56) than in the Medium explainability group 

(M = 19.75, SD = 7.89). However, the strong fluctuations (SD = 7.89 (Medium explainability); 

12.56 (High explainability)) between a low (Min. = 12; 13) and high (Max. = 31; 37) analytical 

interaction within both groups must also be considered. This shows that the participants 

across the different groups show an unequal willingness to analytically interact with the XAI 

methods, regardless of their group membership. 

The average amount of time it took the participants in the High explainability group 

(M = 13.19, SD = 4.82) to classify all mammograms was nearly 30% higher than for participants 

in the Medium explainability group (M = 9.49, SD = 2.8). However, again the range of the 

observations needs to be taken into account. The minimum and maximum figures for the Time 

spent for all classification tasks demonstrate that some participants completed all 15 

mammograms within 4 to 7 minutes, while other participants required much more time—

between 12 and 18 minutes. This indicates that the participants, regardless of the 

explainability group, approached the experiment with different degrees of care. Especially in 

the No explainability group and the High explainability group, a high fluctuation is noticeable 

(SD = 6.12 (No explainability); 4.82 (High explainability)), concluding that the participants have 

completed the classifications tasks either very quick or rather slowly. 
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Cross-sequential descriptive analysis 

In order to get a comprehensive overview of the outcomes of the experiment with regard to 

the dependent variables over the course of the experiment, the findings in this section are 

presented in a cross-sequential way. 

 

 

Figure 13: Classification time per mammogram case 
(Single data point represents a participants’ time spent for the corresponding case; red bars indicate the mammogram cases 

that were incorrectly predicted by the pseudo-AI; red frames indicate cases where the pseudo-AI made a severe mistak16; 

lines indicate the trend of the corresponding explainability group) 

 

Based on Figure 13, overall it can be observed that the time spent per case per 

explainability group does not severely deviate over the course of the experiment. In addition, 

it can be observed that the approximate time to classify the mammogram cases in which the 

pseudo-AI made a wrong prediction (red bars) does not severely differ with the classification 

time taken for the cases in which the pseudo-AI made a correct prediction. A notable 

exception was case 5, in which the AI made a small commission error (ground truth: BI-RADS 

2; pseudo-AI prediction: BI-RADS 3). In this case, it can be observed that 2 out of the 4 

participants in the High explainability group spent remarkably more time to read the 

mammogram. In the two cases when the AI made severe false predictions16 (Mammogram 

 
16 Two BI-RADS classes difference to ground truth 
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case indices 8 and 11, highlighted with red frames), no participant spent notably more time 

on the task, which implies that apparently no participant paid more attention to these cases. 

 

Figure 14: Analytical Interaction per mammogram case  
(Single data point represents a participants’ analytical interaction for the corresponding case (“jittered” for better 

observation of overlapping data points); red bars indicate the mammogram cases that were incorrectly predicted by the 
pseudo-AI; red frames indicate cases where the pseudo-AI made a severe mistake; lines indicate the trend of the 

corresponding explainability group) 

 

 Figure 14 provides insights about the analytical interaction of the participants in the 

Medium- and High explainability group over the course of the experiment. First and foremost, 

it can be observed that the analytical interaction of both groups is clearly similar over the 

course of all 15 mammogram cases. Thus, graphically it cannot be observed that an additional 

XAI method has an increasing or stimulating effect on the analytical interaction of the 

participants in the High explainability group. While comparing the cases in which the pseudo-

AI gave correct predictions with cases in which the pseudo-AI gave false predictions, it can be 

observed that the three cases in which the participants across both groups showed the highest 

analytical interaction were all falsely classified by the pseudo-AI (cases 1, 10, and 11). An 

extraordinarily high analytical interaction can be observed in mammogram case 10, in which 

the pseudo-AI made a small commission error (ground truth: BI-RADS 3; pseudo-AI prediction: 

BI-RADS 4). In this particular case, all radiologists without exception showed an increased 

analytical interaction. In the two cases in which the AI gave severe incorrect predictions (cases 

8 and 11), an increased analytical interaction could only be observed in case 11. In case 8, 
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almost no radiologist analytically interacted with the XAI methods. This indicates that 

obviously incorrect AI predictions do not always necessarily trigger a high analytical 

interaction with XAI methods. 

 

Figure 15: Number of participants who over-relied on AI prediction per mammogram case per 
explainability group; (Only mammogram cases are considered that were incorrectly predicted by the pseudo-AI, red 

frames indicate cases where the pseudo-AI made a severe mistake)  

 

Based on Figure 15 it can be observed that over the course of the experiment, between 

4 and 8 participants constantly over-relied on the pseudo-AI. It is noticeable that in 5 out of 

the 8 cases in which the pseudo-AI made an incorrect prediction (cases 1, 3, 6, 8, and 11), 

almost all participants in the High explainability group (at least 3 out of 4) over-relied on the 

false AI prediction. Even in the two cases when the AI made severe false predictions (case 8 

and 11), almost all participants in the High explainability group gave the same classification as 

the pseudo-AI. However, it is also noticeable that in case 10, in which the radiologists showed 

the highest analytical interaction (see Figure 14), the over-reliance is lowest. Only one 

radiologist each from the Medium- and High explainability group over-relied on the pseudo-

AI. Based on Figure 16, it is demonstrated whether the increase in Analytic Interaction is 

related to a reduced over-reliance in general. 

 

 



51 
 

Figure 16: Analytical Interaction and over-reliance per mammogram case per participant (left: Participants Medium 
explainability group; right: Participants High explainability group) (a dotted line represents the analytical interaction of one participant 

for all cases; red bars indicate the mammogram cases that were incorrectly predicted by the pseudo-AI; red frames indicate cases where the pseudo-
AI made a severe mistake; yellow circles indicate when the participants over-relied on the pseudo-AI) 

 

 

 

 

 

 
 

 

 

Figure 1617 depicts how individual radiologists behave in terms of over-reliance in 

relation to their analytical interaction. Based on the highlighted yellow circles it can be 

observed in which cases individual radiologists over-relied on the pseudo-AI and how 

extensively they analytically interacted with the XAI methods. For both groups, no clear 

pattern for the occurrence of over-reliance can be observed, what indicates that over-reliance 

occurs in both cases, at low and high analytical interaction. This shows that in cases where the 

analytical interaction is high and over-reliance occurs, the additional information regarding 

the AI reasoning process conveyed by XAI methods does not necessarily influence the 

radiologists to deviate from the AI prediction in their own decision. 

 

 

 

 

 

 

 
17 Attention: the plotted lines of some individual radiologists overlap, therefore not every single participants’ 
analytical interaction and over-reliance can be observed 
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Figure 17: Composition of the analytical interaction in the High 
explainability group 

Descriptive analysis of participant behavior 

A closer examination of the underlying data revealed insights about the participants' behavior 

in terms of how they interacted with the XAI methods and the given AI predictions. 

It was found that the participants in the High explainability group hardly ever 

interacted with the RPBC18 (see Figure 17), despite the fact that three out of the four 

participants in this group stated that they perceived the RPBC as “useful”, while the remaining 

participant perceived the RPBC as “somewhat useful” (see Figure C6). The measured analytical 

interaction of the High explainability group is therefore composed almost solely based on the 

interaction with the saliency map. Thus, this finding induces that the participating radiologists 

clearly preferred to search for indications of morphological changes19 on the mammogram 

itself to understand and retrace the underlying AI prediction, instead of seeking for 

explanatory clues apart of the mammogram image. 

 

 

 

 

 

 

 

 

The urge of the radiologists to observe morphological abnormalities on the 

mammogram itself can further be confirmed by looking on Figure 18. The chart demonstrates 

that the radiologists in the Medium- and High explainability group opened the saliency map 

in two-thirds of all cases first, before even looking at the AI prediction. This shows that in most 

 
18 opened only 0.75 times for longer than 2 seconds per participant in the High explainability group throughout 
the whole experiment 
19 Medical science of the form and structure of a particular organism, organ, or tissue (Miller-Keane Encyclopedia, 
2003) 
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Figure 18: Number of cases in which the saliency map was opened before the 
AI prediction 

 

cases, radiologists initially prefer the morphologic indications given by the AI in the 

mammogram itself, before knowing the final predicted BI-RADS diagnosis. 

 

 

 

 

 

 

 

 

 

 

4.3 Hypothesis testing 

This paragraph summarizes the individual findings obtained from the analysis of the stated 

hypotheses. However, it must be clearly noted that the significance of the results of the 

selected statistical methods is not robust due to the small number of participants and only 

represents a very small statistical explanatory power for measuring the relation between the 

explanatory variables and the response variables. Therefore, this chapter should be 

considered as a statistical basis by demonstrating a first approach for future studies 

investigating the relationship between XAI and over-reliance, considering the human cognitive 

abilities. 

Random Distribution Check 

To investigate if the control variables are equally distributed across the 3 experimental groups, 

a One-way ANOVA was conducted. The results (see Table C2) show insignificant effects for the 

variables hosp_academic (F = 1.333, p = .311), last_mamm_1_week (F = .273, p = .77), and 

exp_cad_ai (F = .273, p = .767). Therefore, a random distribution of these variables across the 

three experimental groups is assumed. However, a significant result was found for the variable 
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mamms_weekly_more_20 (F = 3, p = .1), what shows an unequal distribution of participants 

with a high mammogram reading frequency across the explainability groups. By observing the 

data, it can be seen that no participant in the No explainability group reads mor than 20 

mammograms per week, so all participants who read more than 20 mammograms are 

distributed across the 2 treatment groups (see Figure C3). Therefore, the control variable 

mamms_weekly_more_20 is not further considered for the further course of the hypothesis 

testing. 

Check for multicollinearity 

To check for the occurrence of multicollinearity, a correlation matrix was plotted. Based on 

Figure 19, the pairwise correlations between the independent group variables are rather high 

(-0.5), however due to the random distribution of the participants between the 3 groups and 

the equal number of participants per group, this correlation can be ignored. Furthermore, the 

pairwise correlations between the independent variables and the control variables are all 

below |0.50| and the Variance inflation factors (VIF) values are all below 2 (see Table C1). 

Based on those measurements we assume that our coefficient estimates for our independent 

variables are not biased because of multicollinearity (Hair et al., 1995).  

 

Figure 19: Correlation matrix of independent variables and control variables 
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Results 

Table 10 shows the results of the performed regressions with over-reliance as the dependent 

variable. 

 

Table 10: Multivariate regression results 

                                 DV: Over-reliance 

 
(1) (2) 

Baseline = No explainability group 

(3) 

Baseline = Medium explainability group 

No explainability - - 
1.43 

(0.186) 

Medium explainability - 
-1.43 

(0.186) 
- 

High explainability - 
2.00† 

(0.093) 

3.43* 

(0.014) 

Academic Hospital 
1.21 

(0.341) 

-0.08 

(0.935) 

-0.08 

(0.935) 

Last Reading less than 1 week 
1.29 

(0.313) 

1.58 

(0.110) 

1.58 

(0.110) 

CAD/AI experience 
-0.71 

(0.569) 

-1.14 

(0.224) 

-1.14 

(0.220) 

Constant 
3.16* 

(0.038) 

3.59* 

(0.011) 

2.16† 

(0.071) 

    

R2 0.212 0.73 0.73 

Adjusted R2 -0.08 0.51 0.51 

Residual Std. Error 1.88 (df = 8) 1.27 (df = 6) 1.27 (df = 6) 

F-Statistic 
0.72 (df = 3; 8) 

(0.569) 

3.28† (df = 5; 6) 

(0.090) 

3.28† (df = 5; 6) 

(0.090) 

N = 12 

 

 

 

                                                                        †p < .1, *p < 0.05 
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Results for the dependent variable over-reliance (Model 1 – 3). Model 1 is statistically 

insignificant (R2 = 0.212, F(3, 8) = 0.72, p>0.1), meaning that no evidence exists that the 

regression model fits the data better than an intercept-only model and is therefore not further 

considered.  

Model 2 is statistically significant (R2 = 0.73, F(5, 6) = 3.28, p<0.1) and shows that the 

participants in the High explainability group over-relied significantly more (β = 2.00, p<.1) on 

the pseudo-AI than participants in the No explainability group (baseline). This supports H2b. 

However, participants in the Medium explainaiblity group showed no significant difference in 

their over-reliance compared to participants from the No explainaiblity group in this dataset, 

wherefore H2a is rejected.  

Model 3 is statistically significant (R2 = 0.73, F(5, 6) = 3.28, p<0.1)  and indicates that 

participants in the High explainability group over-relied significantly more (β = 3.43, p<.05) on 

the pseudo-AI than participants in the Medium explainability group (baseline), what supports 

H2b. Therefore, H2b is confirmed.  

Two one-sample T-tests were conducted to observe if the analytical interaction of 

participants from the Medium- and High explainability group is significantly different from 0, 

with the purpose to test whether the participants in those two treatment groups analytically 

interacted with the XAI methods at all. Also, a two-sample t-test was conducted to test for a 

significant difference between the Medium- and High explainability group. 

 

Table 11: One-sample and two-sample t-test results 

 
t df p Mean Difference 

95% CI 

Lower Upper 

Analytical Interaction 

(H0 =: μMedium Expl. = 0) 

5 3 0.01* 19.75 7.2 32.3 

Analytical Interaction 

(H0 =: μHigh Expl. = 0) 
3.58 3 0.04* 22.5 2.52 42.48 

Analytical Interaction 

(H0 =: μHigh Expl. = μMedium Expl.) 
0.37 5 0.73 2.75 -16.25 21.75 

N = 12      *p < 0.05 
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Based on the results in Table 11 it can be observed that sufficient statistical evidence 

was found that the analytical interaction of participants in the Medium explainability group 

differs from 0 (t = 5, df = 3, p = 0.01). The same applies for participants in the High explainability 

group (t = 3.58, df = 3, p = 0.04). I can be concluded that participants in both groups indeed 

significantly interacted with the available XAI methods in an analytical manner (rejection of 

H1a). 

Furthermore, it can be shown that not enough statistical evidence exists to argue that 

the analytical interaction between the Medium- and High explainability group are significantly 

different (t = 0.37, df = 5, p = 0.73). This implies that the addition of the RPBC next to the 

saliency map did not result in a considerably greater analytical interaction among the 

participants in the underlying study (confirmation H1b). 

 

Hypotheses Outcome 

H1a: The analytical interaction of participants in the Medium- and High explainability group 

does not significantly differ from 0. 

 

Rejected 

H1b: The analytical interaction of participants in the High explainability group does not 

significantly differ from the analytical interaction of participants in the Medium explainability 

group. 

 

Confirmed 

H2a: Participants in the Medium explainability group show a significantly higher over-reliance 

than participants in the No explainability group. 

 

Rejected 

H2b: Participants in the High explainability group show a significantly higher over-reliance than 

participants in the Medium explainability group and No explainability group. 

Confirmed 

Table 12: Hypotheses testing results 
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5 Discussion 

This chapter discusses the previously analyzed findings of the relationship between the 

amount of explainable AI methods and human over-reliance on AI predictions and the 

analytical interaction with XAI methods through the theoretical lens of heuristically human 

thinking to answer the underlying RQ: 

 

“How do explainable AI methods promote the over-reliance of clinical decision-makers on the 

predictions of non-transparent AI models?” 

 

  Furthermore, this chapter provides the theoretical and practical contributions of this 

study and illustrates limitations as well as opportunities for future research. 

5.1 Analytical Interaction with XAI 

In this chapter, the result in relation to the analytical interaction with the representative XAI 

methods are discussed. This is intended to provide an understanding on how different kinds 

of XAI methods prompt decision-makers in the field of radiology to actually engage in a 

mindful manner with the XAI methods.  

Based on the observed findings regarding the analytical interaction with the 

representative XAI methods, a clear distinction must be made between the effect of the 

saliency map and the RPBC. While the saliency map represents a morphological visualization 

of the AI reasoning process, the RPBC demonstrates the AI reasoning process by using text 

and graphs to describe high-level concepts in the form of bar charts. The availability of the 

saliency map significantly stimulated radiologists to analytically interact with the reasoning 

process behind the AI output, while the addition of the RPBC didn’t trigger radiologists to 

increase their analytical interaction. One reason why the RPBCs were not used could be 

explained by the argument of Gigerenzer & Gaissmaier (2011), namely that humans tend to 

ignore part of the available information associated to their tasks in order to reduce their 

cognitive load. Therefore, the radiologists could’ve avoided the RPBCs on purpose to reduce 

their cognitive load. However, the total cognitive effort involved with the classification tasks 



59 
 

must be questioned because the radiologists tended to execute the experiment very quickly, 

which is also owing to the lack of substantial consequences due to wrong diagnoses. 

Another possible explanation for the unequal usage between the two XAI methods 

could be the occurrence of a salience bias. The bias refers to the fact that individuals are more 

likely to focus on information that is more prominent while ignoring details that are less so, 

resulting in a bias to favor things that are striking and perceptible (Kahneman et al., 1982; 

Bordalo et al., 2012). The eye movements of radiologists are often directed to the most 

“salient” or “informative” regions in an image (McCamy et al., 2014). Salient regions are thus 

a reasonable place for radiologists to explore first when investigating medical images for 

abnormalities (Alexander et al., 2020). Therefore, by looking at the saliency map, radiologists 

can instantly observe those salient regions within the mammogram and can spot causal 

relationships between the AI prediction and possible abnormalities without much cognitive 

effort. On the other hand, the RPBCs are more “external”, meaning that radiologists have to 

focus on a “non-morphological” information source to detect causal relationships, what could 

cost more cognitive effort. 

However, the saliency map as a tool to explain the reasoning behind the AI prediction 

can be questioned. The saliency map might also have been preferably used as a “tool to rapidly 

locate a mass” rather than a "means to comprehend why the AI produced a certain 

prediction", meaning that the participants utilized it more as an active function than an 

explanatory method. The fact that radiologists opened the saliency map before the actual AI 

prediction in two-thirds of all cases supports this assumption. 

5.2 Effect of XAI on Over-reliance 

First, it must be noted again that the findings referred to in this section must be viewed with 

caution due to their low statistical relevance. However, they are still evaluated in order to 

generate a possible basis for discussion and to provide a foundation for future studies that 

have access to a larger group of participants. 

 Ultimately, to fully address the underlying RQ, this chapter discusses the occurrence of 

over-reliance in relation to the different explainability groups and the different amounts of 

analytical interaction. In order to address the "How" in the RQ, the potential causal effects 

which could have led to an increased over-reliance are discussed in detail. 
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Over-reliance between explainability groups 

Due to the fact that the High explainability group showed a significantly higher over-reliance 

than the Medium explainability group, it could be argued that the increased explainability 

initiated by the RPBC was decisive for the increase in over-reliance since the RPBC represents 

the treatment method (the additional XAI method) for the High explainability group compared 

to the Medium explainability group. Combined with the low analytical interaction with the 

RPBC, this finding is consistent with the current literature, which states that XAI methods are 

taken as a general indication of an AI’s competency rather than being examined individually 

for their substance (Bansal et al. 2021; Buçinca et al., 2021; Liao & Varshney, 2021). 

Consequently, this bears the risk to fall into automation bias (AB), meaning that radiologists 

in the High explainability group may have used the existence of the RPBC as an automated cue 

for a heuristic replacement for vigilant information seeking and processing (Mosier & Skitka, 

1999), and the incorrect advice the pseudo-AI gave may have resulted in human decision-

making errors due to inappropriate over-reliance. However, because the RPBC was hardly ever 

interacted with, this line of reasoning is highly doubtful. The question can be raised whether 

the participants in the High explainability group were aware of the RPBC at all, despite the 

interface tutorial and the indication that the radiologists perceived the RPBC as “useful” within 

the scope of the post-hoc questions. Furthermore, individuals in the Medium explainability 

group exhibited nos significantly higher over-reliance than the control group (the Medium 

explainability group showed even less over-reliance than the No explainability group, but the 

difference was not significant), which contradicts the notion that explainability increases over-

reliance and hence undermines the prior reasoning as well. Finally, no apparent pattern could 

be identified between an increase in explainability and an increase in over-reliance. 

Over-reliance between low and high analytical interaction 

Furthermore, no apparent pattern was discovered between the over-reliance in situations 

when the participants heavily interacted with the XAI methods in an analytical manner or 

didn’t interact analytical at all. This indicates that the additional information conveyed by the 

XAI methods does not necessarily influence the radiologists to deviate from the AI prediction 

in their own decision. The occurrence of information overload in these cases, as indicated by 

Poursabzi-Sangdeh et al. (2021), is unlikely since the amount of information and detail 

conveyed by the saliency map alone was not excessive. One possible explanation for this 
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behavior could be that the radiologists may have perceived the pseudo-AI as a powerful agent 

with superior analysis and processing capabilities (Lee & See, 2004). Consequently, the 

radiologists may have overestimated the performance of the pseudo-AI and therefore over-

relied on the false predictions, regardless of their analytical interaction. 

5.3 Theoretical Contributions 

While the current literature on XAI is mainly concerned with presenting and explaining new 

or existing XAI methods from the technical side in an algorithm-centered point of view, yet 

the human side of the equation is often lost in this technical discourse with XAI (Liao & 

Varshney, 2021; Ehsan & Riedl, 2020). This study contributes to the literature on human-

centered XAI, a domain that aims to investigate how the two processes — technological 

development in XAI and the understanding of human-factors — co-evolve (Ehsan & Riedl, 

2020). It does so by providing a first empirical basis on how radiologists cognitively engage 

with different types of XAI methods and how XAI methods affect the human over-reliance on 

faulty AI predictions.  

Despite no apparent pattern regarding the influence of explainability on over-reliance 

could be found, it was demonstrated that even in a particularly risk-averse domain like 

healthcare, radiologists do not employ all available information regarding an AI output in their 

decision in order to avoid misguided diagnosis in a Hybrid Intelligence setting. This finding is 

important since it provides an incentive for scholars in the field of human-centered XAI to 

further investigate critical sectors where a human operator's reliance on faulty AI predictions 

can result in immense negative consequences. 

5.4 Practical Contributions 

Despite the low statistical meaningfulness of this study due to a low participant count, this 

study offers still important patterns in relation to the behavior of radiologists while being 

exposed to XAI. Therefore, this thesis mainly offers practical contributions for vendors of AI 

applications for clinical imaging (1) and the radiologists who work in a Hybrid Intelligence 

setting (2).  

 First, the differences in the observed analytical interaction regarding the two imitated 

XAI methods provide AI software vendors for clinical imaging with knowledge regarding which 

kinds of XAI methods to prioritize. The saliency map, which showed visual morphological 
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explainability in the mammogram image itself, was clearly favored by the participating 

radiologists over the RPBC, which depicts the AI reasoning process in an external graph. This 

shows that radiologists prefer explanatory methods that establish a direct visualized causal 

relationship with the object under investigation. Despite the fact that conventional AI 

software for clinical imaging uses saliency maps already as a standard XAI tool, vendors for AI 

software for clinical imaging should focus on augmenting their products with extensions that 

broaden the applicability of these visualization methods to diversify the type of explanation 

that can be produced. One potential solution could be the implementation of additional 

explanations that do not highlight individual features from one image but instead pairs of 

features from two related input images (e.g., top-down view and side view in mammogram), 

reflecting the fact that a jointly relevant explanation could offer additional causal reasoning 

for the underlying AI prediction (see Figure D1) (Samek et al., 2021). 

 Second, this study creates awareness for radiologists in a Hybrid Intelligence setting by 

stressing the cognitive attention related to XAI methods and the potential resulting danger of 

over-reliance on faulty AI predictions. It is crucial that XAI methods are tailored to the needs 

of end users in order to provide value. Therefore, this study is intended to prompt medical 

decision-makers to actively participate in the research of suitable XAI methods for clinical 

practice, so that the needs of the human decision-makers are also taken into account. 

5.5 Limitations and Future Research 

5.5.1 Limitations  

Low participant count 

Although this study provides new insights about the use of XAI from a human-centered 

perspective, it is necessary to point out some serious limitations that arose during the conduct 

of this study. First, a clear limitation of this study is the low number of participants. Despite 

the help from internally referred contacts in the radiology sector and researchers at the VU 

Amsterdam, radiology residents or fully trained radiologists were (1) very difficult to approach 

due to time constraints and busy schedules and (2) very difficult to incentivize20. As a result, 

 
20 Compared to other studies in the radiology sector, there was no monetary incentive offered because of funding 
possibilities in the scope of this research. This could have meant that radiologists were used to a monetary 
incentive when participating in an experiment and since this was not offered in this experiment, they may not 
have taken part in this experiment. 
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the findings of this study are only based on a small sample compared to the total population 

and have therefore only a low validity.  

Construct Validity 

The operationalization of the concepts in this study was precisely coordinated with the 

development of the experiment application. However, the concept of analytical interaction 

could only be quantified in terms of clicks and the length of time a XAI method was opened. 

This method is not very precise to measure the actual careful engagement of radiologists with 

XAI methods but was the most feasible in the context of the experiment. The accuracy to 

measure the mental effort of the participants could be increased by more advanced technical 

tools like an eye tracker for instance, which can measure precisely on which part of the screen 

the participant actually focuses. 

Online nature of the experiment application 

Furthermore, due to the fact that the experiment application was distributed online and 

participants were able to take part in the experiment from every location at any time with 

their private equipment (e.g., own monitor), the experiment was most likely conducted in a 

non-clinical environment by most of the participants. This private environment does not 

reflect the natural clinical environment to which radiologists would normally be exposed in 

several ways: (1) The monitors that are normally used in a clinical setting to assess image 

material are high performant in terms of image quality (e.g., extremely high resolution) and 

are technically far ahead of conventional monitors for private use. The flexibility to conduct 

the experiment on a private monitor therefore carries the risk that the participants’ accuracy 

of spotting abnormalities while read the mammograms is reduced. Consequently, by not being 

able to observe fine abnormalities, the classifications the participants gave could be 

influenced by the technical limitation of the monitors to properly represent all necessary 

details in the mammograms. By designing the experiment, this shortcoming was tried to be 

reduced to a certain degree by implementing a zooming option, however, the “low-

resolution” limitation still remained present.  

Additionally, the participants had no time pressure (2) by evaluating the 

mammograms. Usually, radiologists get a fixed set of clinical material during their working 

hours, and they have to work through it, what puts them under time pressure (McDonald et 
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al., 2015). However, in the conducted experiment, the participants were able to take as much 

time as they needed, what takes time pressure from them and allowed them to examine the 

mammograms more precisely. Therefore, the experiment carried the risk that the participants 

don’t necessarily reflect their normal working behavior in a real clinical setting, what also 

reduces the validity of the results of this study in a real clinical environment. However, it could 

be observed that the participants in this study showed a contradictory behavior. While the 

assumed average time per mammogram reading was around 3 minutes (Haygood et al., 2009), 

the average reading time per mammogram was 51 seconds in this experiment. The reading 

times also varied heavily, with some participants requiring only 20 seconds for some 

mammogram cases. This implies that the participants in general dealt less mindful with the 

readings of the mammograms than in a real clinical setting, what is very likely caused due to 

the artificial nature of the experiment and the non-existing consequences that an incorrectly 

predicted classification would normally cause in a real clinical setting. Again, this limits the 

validity and generalizability of the results of this study to a real clinical environment.  

Another limitation caused by the online nature of the experiment is the impossibility 

to control for distractions (3). Activities carried out by the participants simultaneously while 

doing the experiment, such as conversations with other people about different topics or 

listening to music for instance, could not be prevented and might have had an impact on the 

participants’ attention.  

Artificial clinical setting in general 

Moreover, the general artificial setting regarding the pseudo-AI and the “self-made” 

explainable methods could’ve had a negative influence on the participants’ behavior. The 

artificial information that is conveyed by the pseudo-AI and it’s supporting explainable 

methods might not have been realistic enough to imitate an original AI that is augmented with 

real explainable methods. This could’ve encouraged participants not to engage with the 

offered explainable methods because they didn’t seem authentic enough, and therefore 

needless. As a result, the measured analytical interaction would not be lowered due to the 

assumed heuristic thinking, but due to generally unrealistic representation of the conveyed 

information of the explainable methods. However, the predictions of the pseudo-AI, the 

saliency maps and the RPBCs were all checked by an experienced radiologist, wherefore the 

risk for unrealistic information convey by the XAI methods was tried to be reduced as much 
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as possible. Also, by conducting a small post-hoc survey about the usefulness of the XAI 

methods and the pseudo-AI, most of the participants stated that they perceived them as 

“useful” or “somewhat useful”. Thus, it is assumed that the data was affected only slightly due 

to an unrealistic imitation. 

Lack of field knowledge in medicine 

As a final limitation, the disagreement between various radiologists in assigning BI-RADS 1 and 

BI-RADS 2 categories must be mentioned, as already addressed in the Chapter 4.1. The 

interchangeable use between BI-RADS 1 and BI-RADS 2 categories among radiologists led to a 

data bias regarding given BI-RADS classifications of some participants, since the experiment 

included BI-RADS 2 cases that were perceived by some radiologists as BI-RADS 1 cases. Due to 

the fact that the experiment was already promoted at the time the remark was made and data 

was already being collected, no more adjustments were made to the implemented BI-RADS 

classes in the experiment itself. As a solution, both BI-RADS classes were treated as one. To 

eliminate such field-specific inconsistencies upfront, the experiment should be tested with a 

small number of field experts before being presented to a wide number of participants. Due 

to time constraints, this was not possible in the context of this thesis. 

5.5.2 Future Research 

This study, despite the number of serious limitations, can be seen as a basis for future research 

studies in the field of human-centered XAI. First, to obtain more valid and robust results, this 

study should be repeated with a higher participant count. Second, the study can be conducted 

in a clinical environment with a real AI application supported by real explainability methods in 

the scope of a field- or natural experiment. This would reduce many limitations regarding the 

non-clinical environment and the design-related weaknesses of the experiment used in this 

study. Also, more advanced technologies could be used (e.g., eye tracker) in future research 

to collect more precise data about the actual behavior of the participants while being exposed 

to XAI. Lastly, this study can be replicated in domains other than healthcare to either 

generalize the findings of this study across different domains or to provide new insights about 

different human behaviors related to XAI, depending on the context of a single domain. 
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Appendix A – Graphs referred to in Literature part 

 

 

Figure A1: The number of research publications on ML explanations for the search terms 
‘Interpretable Artificial Intelligence, ‘XAI’, and ‘Explainable Artificial Intelligence’ (Barredo Arrieta et 

al., 2020) 

 

 

 

Figure A2: Receiver operating characteristic (ROC) curve with Area under curve (AUC), whereby the 
ROC curve describes the relation between the True positive rate (TPR) an the False positive rate (FPR) 

(Narkhede, 2022) 
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Figure A3: Interface of the prototype of the experiment application made in Figma 

 

 

Table A1: Evidence Table for Clinical Management Recommendations for Mammograms by Breast 
Imaging Reporting and Data System (BI-RADS) Category (Eberl et al., 2006) 

 

Appendix B – Experiment application 
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Figure B1: Explanation interface. The “Show Heatmap” button was highlighted and a corresponding 
text field was explaining the functioning of the button 

 

 

Figure B2: Experiment classification layout for high explanation group with opened BI-RADS 
explanatory info 
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Figure B3: Imitated “zooming” function when clicking on the mammogram image 

 

 

Figure B4: Provided AI “malignancy score”. Only accessible for the High explainability group. 
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Figure B5: Post-hoc questions  

 

 

Figure B6: Informative interface to elaborate how the collected participant data is treated in the 
context of the experiment 

 

Appendix C – Data collection  
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Figure C1: Distribution of the experiment participants across the different explainability groups based 
on their employment in an academic or non-academic hospital/clinical institution  

 

 

Figure C2: Distribution of the experiment participants across the different explainability groups based 
on the timespan since their last mammogram reading 
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Figure C3: Distribution of the experiment participants across the different explainability groups based 
on their mammogram readings per week 

 

 

Figure C4: Distribution of the experiment participants across the different explainability groups based 
on their experience with CAD/AI 
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Figure C5: Perceived usefulness of the saliency map from participants in the Medium- and High 
explainability group 

 

 

 

Figure C6: Perceived usefulness of the RPBC from participants in the High explainability group 

 

 

 Model 0 Model 1 Model 2 Model 4 Model 5 Model 6 

no_explain - - 1.52 - - 1.52 

medium_explain - 1.52 - - 1.52 - 

high_explain - 1.68 1.68 - 1.68  1.68 



XX 
 

hosp_academic 1.18 1.45 1.5 1.18            1.5 1.5 

last_mamm_1_week 1.18 1.28 1.28 1.18            1.28 1.28 

exp_cad_ai 1.18 1.28 1.28 1.18            1.28 1.28 

Table C1: VIF values 

 

Control Group df Mean square F Sig. 

hosp_academic 2 0.3333 1.333   0.311 

last_mamm_1_week 2 0.08333    0.273   0.767 

mamms_weekly_more_20 2 0.5833        3 0.1* 

exp_cad_ai 2 0.08333    0.273   0.767 

Table C2: Results of the One-way ANOVA test of the four control variables  *p < 0.1 

 

 

Appendix D – Proposed Future XAI methods 

 

 

Figure D1: BiLRP method that highlights pairs of features from two input images (Samek et al., 2021) 
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Appendix E – Mammogram cases overviews 

Case ID 

BI-RADS Ground 

Truth (Left and 

Right Breast) 

BI-RADS AI 

prediction (Left and 

Right Breast) 

Error Type Seriousness of the error 

1 Li: 2; Re: 2 Li: 2; Re: 3 Commission Minor 

2 Li: 3; Re: 2 Li: 3; Re: 2 - - 

3 Li: 4; Re: 2 Li: 3; Re: 2 Omission Minor 

4 Li: 2; Re: 5 Li: 2; Re: 5 - - 

5 Li: 2; Re: 2 Li: 2; Re: 3 Commission Minor 

6 Li: 2; Re: 3 Li: 2; Re: 2 Omission Minor 

7 Li: 2; Re: 4 Li: 2; Re: 4 - - 

8 Li: 4; Re: 2 Li: 2; Re: 2 Omission Severe 

9 Li: 2; Re: 3 Li: 2; Re: 3 - - 

10 Li: 3; Re: 2 Li: 4; Re: 2 Commission Minor 

11 Li: 2; Re: 2 Li: 2; Re: 4 Commission Severe 

12 Li: 2; Re: 4 Li: 2; Re: 4 - - 

13 Li: 2; Re: 3 Li: 2; Re: 2 Omission Minor 

14 Li: 2; Re: 2 Li: 2; Re: 2 - - 

15 Li: 2; Re: 2 Li: 2; Re: 2 - - 

Table E1: Info Table about used Mammogram Cases 

Appendix F – Ethical Approval 
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